

i

DYNAMIC ANALYSIS OF MALICIOUS CODE IN A NON-SIMULATED ENVIRONMENT

BY

BRUNO R. NADER

A Thesis Submitted to the School of Graduate Studies

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Southern Connecticut State University

New Haven, Connecticut

August 2014

ii

DYNAMIC ANALYSIS OF MALICIOUS CODE IN A NON-SIMULATED ENVIRONMENT

BY

BRUNO R. NADER

This thesis was prepared under the direction of the candidate’s thesis advisor, Dr. Hrvoje Podnar,

Department of Computer Science, and it has been approved by the members of the candidate’s

thesis committee. It was submitted to the School of Graduate Studies and was accepted in partial

fulfillment of the requirements for the degree of Master of Science.

Hrvoje Podnar, Ph.D.
Thesis Advisor

Amal Abd El-Raouf, Ph.D.

Second Reader

Lisa Lancor, Ph.D.
Department Chairperson

iii

ABSTRACT

Author: Bruno R. Nader

Title: DYNAMIC ANALYSIS OF MALICIOUS CODE IN A NON-

 SIMULATED ENVIRONMENT

Thesis Advisor: Dr. Hrvoje Podnar, Ph. D.

Institution: Southern Connecticut State University

Year: 2014

 This thesis presents a dedicated system to analyze any binary file, and classify it as

malicious or benign. Behavioral data was collected over a period of time and used to determine

the appropriate code category.

 Unknown code was categorized using statistical measures such as standard deviation,

mean and variance. Informative reports that included detailed data about the modifications made

to the Windows registry, the file systems, and any other unusual processed information were

analyzed for this purpose.

 The experiments were conducted through the use of code specifically written for the

task along with several commonly used software packages for the purpose of hard drive

formatting and data manipulation.

iv

ACKNOWLEDGEMENTS

 I would like to express my sincere thanks to Dr. Podnar for all of his help with this

project, for all of the nights that we spent together at his office talking about this project, and

other technologies and facts within the Computer Science world. I also would like to thank Dr.

Abd El-Raouf for being my second reader on this project, and for supporting my thesis work. I

really learned a lot from her during classes, which gave me a huge interest in this project and

various other topics. I also would like to thanks Dr. Syed for all the classes that I had with her,

for all the material that was well presented to us, and for making us learn and think about the

problems in a different way. I really enjoyed her classes and learned a lot with her.

 Finally, I would like to thank my wife, Claudia Ferreira, for helping me with this

project by giving me support, and for taking care of our son, Brendon, during my long nights at

Dr. Podnar’s office. I also would like to thank my son, Brendon Nader, and my daughter,

Barbara Nader, for their support and understanding. And, lastly, I would like to thank my Mom,

Maria Do Socorro Vieira Nader, for being a wonderful mother, for always encouraging me to

continue studying, and for the education that she provided me with. Thank you, Mom, for being

a great mother, and for helping to make me the man I am today. I love you all, Claudia, Brendon,

Barbara, Mom, and Dad!

v

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION.. 1

 1.1 Types of Computer Systems’ Vulnerabilities ….. 1

 1.2 Detection Approaches... 3

 1.3 Statement of Purpose.. 4

CHAPTER 2: SYSTEM DESIGN …………... 6

 2.1 High Level System Architecture ……………….. 6

 2.2 Hard Disk Partitioning ………………………... 7

 2.3 MaCod System Design ……………………….. 9

CHAPTER 3: METHODOLOGY.. 13

 3.1 Tools Used to Build the MaCod System …….. 13

 3.1.1 Visual Studio 2010 IDE …………….. 13

 3.1.2 .NET Framework/C# Programming Language ………………................... 14

 3.1.3 Partitioning with Gparted ……………………….…................................... 15

 3.1.4 Cloning with Clonezilla ……….. 16

 3.1.5 Before and After Tool ………... 17

 3.1.6 RegKeg ……………………... 20

 3.1.6.1 Create the Before Key Dataset …………………….................. 21

vi

 3.1.6.2 Binary Code Runner ….. 22

 3.1.6.3 Create the After Key Dataset …….. 23

 3.1.6.4 Build Suspicious Dataset File ….. 24

 3.1.6.5 Build General Statistics Data Points ….................................... 24

 3.1.6.6 Before and After Dataset Analysis and Reporting ……........... 25

 3.1.6.7 Classification of Binary Code ….. 31

CHAPTER 4: SYSTEM IMPLEMENTATION ….. 33

 4.1 Before and After Batch Script ……………….. 33

 4.2 Directory Naming Convention …………... 35

 4.3 Binary Code Runner …………….……... 38

 4.4 RegKeg ………………………….……..…... 39

 4.4.1 Create the Before and After Key Datasets ….. 40

 4.4.2 Build Suspicious Dataset File ………... 41

 4.4.3 Build General Statistics Data Points …... 43

 4.4.4 Before and After Dataset Analysis and Reporting ….................................. 44

 4.4.5 Classification of Unknown Binary Code ………….................................... 49

CHAPTER 5: RESULTS ……….……………….. 52

 5.1 Training RegKeg ………….………………….. 52

 5.1.1 Compare Before and After Datasets in Training Mode …………………. 53

 5.1.2 Build Suspicious Dataset List …………………………...………………. 55

 5.1.3 Malicious Code Patterns ………………………………...………………. 56

 5.1.4 Compare Before and After Datasets in Experimental Mode ……………. 56

vii

 5.1.5 Build Statistical Data Points File ………………………………..………. 58

 5.2 Threshold Values ………………….…….……... 58

 5.3 Experimental Sample Datasets ………………...…………………………………... 59

 5.4 Performance ………………………….….……... 60

CHAPTER 6: FUTURE WORK …………………………..…... 62

APPENDICES... 63

 APPENDIX A: SOURCE CODE .. 62

REFERENCES... 136

viii

LIST OF TABLES

Table 5.1.1 Training Sample Breakdown …………………... 53

Table 5.2.2 Statistical Points for Binary Classification ……..…... 58

Table 5.3.2 Classification Status Results ………………….. 59

Table 5.4.1 Duration/Effectiveness of Status Results …………………....................................... 60

ix

LIST OF FIGURES

Figure 2.1.1 Malicious Code Detection (MaCod) System …….. 7

Figure 2.2.2 MaCod’s Hard Disk Partitions ………………….…………………....................... 8

Figure 2.3.1 MaCod System Design …………………….. 9

Figure 2.3.2 Binary Code Runner ………..…….. 10

Figure 2.3.3 System Shutdown Timer ……………………..…………………........................... 10

Figure 2.3.4 RegKeg User Interface …………………….. 11

Figure 2.3.5 Code Classification Alert Message ……..…... 12

Figure 3.1.1 Visual Studio 2010 Integrated Development Environment (IDE) …...................... 14

Figure 3.1.2 Gnome Partition Editor (Gparted) Software ……... 15

Figure 3.1.3 Clonezilla Device to Device Cloning Mode ………... 17

Figure 3.1.4 Windows Registry ………………………….. 18

Figure 3.1.5 Directory Naming Convention ………………..….. 20

Figure 3.1.6 RegKeg Workflow Diagram ……………………... 21

Figure 3.1.7 Binary Code Runner …………………………….. 23

Figure 3.1.8 Statistics Report ……………………………………………………...................... 25

Figure 3.1.9 Parameter Message Alert ………………….. 26

Figure 3.1.10 Registry Comparison Results Message …………... 31

x

Figure 3.1.11 Binary Code Classification Alert Message …………………............................... 32

Figure 4.3.1 Unacceptable File Type Message ……………... 39

Figure 4.4.1 Parent Path Alert Message …………...……... 42

1

CHAPTER 1: INTRODUCTION

 This chapter serves as an introduction to the different types of computer system

vulnerabilities, and the description of the malicious code detection problem. This chapter will

also present the different detection approaches used to detect and classify an unknown binary

code. This chapter will conclude with the statement of purpose presented for this thesis.

1.1 Types of Computer Systems’ Vulnerabilities

With the popularity of the Internet, the presence of malicious code has become

widespread. Not only has it increased in volume, but also in complexity and sophistication.

Malicious code has exhibited abilities to avoid detection and/or deletion [1]. This has presented a

serious risk to the security of computer systems, threatening the integrity and confidentiality of

personal information [2]. Currently malicious code categories are associated to types of

activities performed. These categories include:

• Viruses

• Trojans

• Adware

• Worms

2

According to the Microsoft Security Intelligence report, released in July of 2012, viruses

are the most common and yield approximately 57% of all malicious code [3]. A virus is

characterized as a code that can replicate itself without end user interaction [4]. Viruses can

damage file systems and/or take over the use of system resources. Typically, a virus might attach

itself to a legitimate host application program, and then complete execution when the code is

activated [5].

A Trojan, on the other hand, is generally a self-contained malicious program that will not

self-replicate but will perform malicious actions on users’ computers without their knowledge.

Users need to download Trojans [6]. Therefore, Trojans need to disguise themselves as fully

functional programs with desirable capabilities. When Trojans are triggered, by being

downloaded onto a computer, they can cause loss, theft of data, or create back doors to the

users’ computer. This will allow hackers access to the system, allowing confidential and

personal information to be compromised [7].

Another example of malicious code is Adware. Adware is a software package that shows

advertisements to end-users in order to generate revenue for the author of the adware. Usually

the advertisements are inserted within the display of other software. When the user downloads

the software, the ads are attached to the software [8]. Adware is usually installed prior to the

desired software and/or tool has completed being downloaded. In this case, the Adware will be

disguised within the software [9]. Then, when we are prompted to click finish and say yes to

complete the install, the user executes the Adware unintentionally in order to acquire the desired

software and/or tool. While running the legitimate software, the user will be exposed to

undesirable ads. These ads may be presented to the user many times, in the form of popup

screens, characteristic of their bothersome and potentially malicious nature [10].

3

A worm is a standalone program that uses the network to replicate itself in order to

spread to other computers through local network connections. A worm differs from a virus in

that it does not need to attach itself to a host application in order to replicate. A worm harms the

network by consuming bandwidth and slowing down the rest of the machines in the network

[11].

1.2 Detection Approaches

There are two main approaches for detection of malware: static and dynamic analysis.

Static analysis is the actual viewing and parsing through the code, and can be done when

scanning the binary code with anti-virus software [12]. First, one would look at the malware with

a hex editor, then unpack the malware, and then perform string searches and disassemble the

malware. Dynamic analysis is a way to understand how the malware behaves when executed,

what it talks to, what gets installed, and how it runs [13]. Dynamic analysis also consists of

monitoring the execution of the program to detect malicious behavior [14].

Static analysis has the advantage of being able to analyze the complete code. It is usually

faster than dynamic analysis and, as such, can be used against multiple executables in a short

period of time. By using the static analysis approach, virus scanners (a database of descriptions

or signatures that characterize known malware instances) are unable to detect malicious code that

changes itself over a period of time unless a new signature is defined for the mutated code [15].

In contrast, dynamic analysis utilizes indirect measures to follow the state of a computer

system. Such measures are used to detect the malicious features of the running code. Some

measures involve monitoring changes in the file system, registry key values, processes, and

4

services list [15]. Dynamic analysis has also been tested by a number of malware detection

systems. Some of those systems include CWSandbox [16], Norman Sandbox [17], TTAnalyze

[18], and Cobra [19]. The sandbox approach requires automatically loading the malicious code

into a virtual machine environment and executing it. This approach records system calls, initiates

processes and Windows registry changes during the execution of the code, and generate reports

about the activity [20].

Despite the facts that the dynamic analysis approach reduces the workload of the human

analyst, it has drawbacks. Malicious code is often equipped with detection routines that check for

the presence of a virtual machine or a simulated OS environment [11]. When malware detects

such an environment, it will modify its behavior and not perform malicious actions producing

incorrect results. In this case, the code will be classified as benign. Another drawback of this

dynamic approach is that only one piece of malicious code can be analyzed during a test. This is

done in order to reduce interference between multiple applications and to isolate the behavior of

the code in question [21].

1.3 Statement of Purpose

 This thesis presents a new way to analyze, detect, and to qualify an unknown piece of

possible malicious code. It also describes an unconventional way of running the questionable

code in a real system instead of a virtual machine. We will now present a new approach of

detecting, analyzing, and categorizing suspicious code by using the results of running the code

on an actual system. Other signature-based detection systems compare the contents of the file

to be tested against known malicious code.

5

 This research project utilizes a snapshot from the system properties before and after the

suspect code was run on the system. The system snapshot includes all the registry key entries

and a list of the files present in the system. In this approach, we are not able to monitor the

activity of malicious code since the analysis is done long after the code has done its damaging

tasks to the system.

 In this thesis, an approach is presented that will attempt to detect the level of malicious

behavior after the attack has occurred. In order to accomplish this task, a computer system was

created with multiple hard drive partitions containing separate, but identical, Windows XP

Professional operating system installations. This was done, instead of installing the system on

a virtual machine, in order to counteract the ability of the virtual machine, or simulated

operating system, detection built into many types of malicious code. This type of detection

would then enable the malicious code to escape detection by staying dormant, or altering its

behavior, resulting in the inability to create a signature used to detect a malicious piece of

software.

For this project, we are able to provide the security community with other dynamic

analysis tools. This system is able to detect and classify any suspicious code as being malicious

or benign with a 90% success rate.

6

CHAPTER 2: SYSTEM DESIGN

This chapter describes the high-level system architecture necessary to build the Malicious

Code Detection (MaCod) system. It will also explain the steps, and the different parts of the

system, in order to allow for the unknown binary code to run. How the system can then quickly

be brought back to its clean and initial state for the analysis of another binary code will also be

addressed.

2.1 High Level System Architecture

 Usually users do not realize that their computer systems have been affected until after

the malicious activity has been completed. The evidence of the malicious activity is present on

the computer system hard disk (HD) drive. The approach used by the system that was designed

for this thesis requires a snapshot of the computer system before and after the unknown activity

has occurred.

7

Figure 2.1.1 - Malicious Code Detection (MaCod) System.

 These snapshots are then utilized for analysis and detection purposes. The MaCod

system will use a number of analysis techniques in order to determine if the code that affected

the MaCod system is malicious in nature. This is done in multiple stages, starting from a healthy

system and possibly ending up with an affected system. To make this possible, the approach

started with the same operating system and file structure configuration. The experiment was

performed by utilizing unknown code run for a pre-specified length of time. The final state of the

computer system was recorded and used for analysis. The complete process is done on a single

workstation.

2.2 Hard Disk Partitioning

This section will explain how the system hard disk is divided and the reason behind its

structure. In the MaCod system, the hard drive is partitioned into 3 parts with the following

names:

• The Experimental Partition

8

• The Clean Partition

• The Running Partition

The Experimental Partition, like its name describes, is used to run the unknown binary

code. This partition is the sandbox of the system, where the binary code is allowed to perform all

of its actions for a predefined amount of time. This partition is fairly small, containing 14.65

gigabytes (GB) of total space. The reason for creating such a small partition is to enable the

system to be restored back to its initial and clean state fairly quickly.

The next partition of the system is the Clean Partition. This partition is similar to the

Experimental Partition, containing the same size of 14.65 GB of space. As a matter of fact, the

Experimental Partition is a cloned copy of the Clean Partition. This partition is necessary to

allow the Experimental Partition to be restored back to its initial and clean state after an

unknown binary code has finished running.

The Running Partition is used to store and generate the analysis reports during the data

collection process. This partition is also used to store the source code for the custom software,

called RegKeg, which was designed to help in the collection of the data and the generation of the

analysis reports. All of these analysis reports are also stored in this partition for further analysis

at a later time. This partition is set to the remaining size of the hard disk that, in the case of this

thesis experiment, was set to 667.37 GB of total space, as it is shown in Figure 2.2.1 below:

Figure 2.2.1 – MaCod’s Hard Disk Partitions

9

2.3 MaCod System Design

The main modules of the MaCod System are presented in Figure 2.3.1.

Figure 2.3.1 – MaCod System Design

The system has various stages in order to determine if the code in question is malicious or

not. These stages are: known and unknown code execution, data collection, data summary, a

scoring algorithm, and an analysis report with the final malicious classification results.

 The first module to be run by the user is the module responsible for collecting the data for

the system before any unknown code has been run. This will be the before dataset. After this

process, the unknown binary code can then be run in the experimental partition. For this process,

10

a module was created called the “Binary Code Runner”. This is a DOS command line program

that will ask the user for the path of the unknown code to be run as shown in Figure 2.3.2 below:

Figure 2.3.2 – Binary Code Runner Module

 After the user enters this information correctly, the system will run the code and will start

a timer to halt and restart the system after 5 minutes (as shown in Figure 2.3.3 below).

Figure 2.3.3 – System Shutdown Timer

After the system is restarted into the running partition, the user will need to run another

module that is responsible for collecting the data and generating the analysis reports. This after

dataset will then be stored and saved for further analysis at a later time.

11

After collecting the after dataset, the user will then allow RegKeg to compare the before

and after dataset by initiating another module (as shown in Figure 2.3.4). The user would click

on the menu button that reads “Start Data Analysis and Reporting.”

Figure 2.3.4 – RegKeg User Interface

After comparing the before and after datasets, RegKeg will generate statistical data for

that unknown binary code. This statistical data will contain the average, the median, and the

standard deviation of the score in respect to the entire dataset that was collected during the

training process of the system.

After generating the statistical data, the user can then run the code classification module,

which will read the statistical data that was generated in the previous step. This module will then

determine the code classification of the unknown binary code based on the data that was

collected during the training process. This module will then display to the user the results in the

form of an alert message, as show in Figure 2.3.5 below.

12

 Figure 2.3.5 – Code Classification Alert Message Result

 This section concludes with a high level design of the MaCod System architecture. By

following these instructions and processes, the user is able to gather data, generate analysis

reports, and attempt to classify the unknown binary code that was run in the system. Another

important aspect is that this configuration will allow the user to quickly restore the system back

to a clean state, which will enable the user to run more binary codes for analysis.

13

CHAPTER 3: METHODOLOGY

In this chapter, the modules of the system will be described as the gathering of the data,

and the reporting and intelligence behind it. This chapter will present the processes and steps

necessary to perform these tasks.

3.1 Tools Used to Build the MaCod System

This thesis utilized a series of software tools and custom code to build and test the

experimental system. Below is a list of tools used for the system:

• Microsoft Visual Studio (VS) 2010 Integrated Development Environment (IDE)

• C# Programming Language/.NET Framework

• Gparted

• Clonezilla

• Windows Batch Scripting Language

• RegKeg – Custom Software

3.1.1 Visual Studio 2010 IDE

14

For this project, the decision was made to use VS 2010 Professional IDE for a variety of

reasons. VS 2010 enabled the development of the project code in a timely manner due to the

capabilities of efficient testing and debugging. The VS 2010 professional version is a free IDE

for computer science students that provided an environment for software development as shown

in Figure 3.1.1 below:

Figure 3.1.1 – Visual Studio 2010 Integrated Development Environment (IDE).

3.1.2 .NET Framework/C# Programming Language

The programming framework that comes bundled with the VS 2010 IDE is a software

framework developed by Microsoft called the .NET (pronounced dot net) Framework. It includes

15

a large library, and provides language interoperability across several programming languages

[22]. C# .NET (pronounced c-sharp) was chosen from multiple languages supported by the .NET

framework to create the custom code used in the experimentation. C# was designed to be a

simple, general purpose, and object-oriented programming language [23].

3.1.3 Partitioning with Gparted

For the partitioning module, the system used Gnome Partition Editor, also known as

Gparted, a disk partitioning software used to partition the hard drive. Gparted is a popular

software package that is free, open source, portable, and user friendly with a seamless Graphical

User Interface (GUI). The Gparted tool enables users to change partitions by sliding the partition

size bars to set the appropriate partitions sizes. In addition, it supports the majority of file

systems and formatting [24].

As seen in Figure 3.1.2 below, three partitions were created: NTFS, EXT4, and a Linux-

swap file system.

16

Figure 3.1.2 – Gnome Partition Editor (Gparted) Software.

When using the Gparted software, the hard drive of the system computer was split into 3

partitions. The Experimental and Clean partitions were both set to 14.6 gigabytes (GB), since the

Experimental partition is a clone of the Clean partition. We chose a fairly small partition size for

the Clean and Experimental partitions in order to speed up the process of imaging and cloning

from one partition to another.

The Running partition was set to the remaining size of the hard drive that, in our case,

was 667 GB. This partition was used to house data files and source code for the development of

the custom software used to analyze and determine the degree of maliciousness of the file.

3.1.4 Cloning with Clonezilla

17

The other software tool that was used to build the system was Clonezilla, which is free

and open source software for disk imaging and cloning [25]. Clonezilla was utilized before the

testing to copy an image of a healthy system stored in the Clean partition onto the Experimental

partition. The cloning is done by copying sector by sector from the original image to the

Experimental partition from the Clean partition as shown in Figure 3.1.3. This process insures

an exact clone of the Experimental partition.

Figure 3.1.3 – Clonezilla Device to Device Cloning Mode

Figure 3.1.3 shows the menu selection that the user is presented with during the cloning

process. In addition to cloning from partition to partition, Clonezilla provides options to clone to

or from a disc image file. Clonezilla can be started from the command line by specifying the

necessary parameters [25]. For example, the following command:

18

sudo /opt/drb1/sbin/ocs-onthefly –e1 auto –k –f sda1 –t sda2

The above command will create a clone copy of the sda1 (Clean) partition to the sda2

(Experimental) partition, with auto resizing as an additional feature of the program.

3.1.5 Before and After Tool

 One of the tools used for data collection is the before and after tool. This tool’s main

purpose is to grab a snapshot of the complete directory structure, file listing, and system registry

keys before and after suspect code has been executed.

 The significance of the Windows Registry is that it stores configuration settings and

options on Microsoft Windows Operating Systems [26]. In the process of installing any software,

Windows Registry Keys will be generated and stored. Those keys are used by the operating

system, the installed software, and any other software that needs to interact with the installed

software. Applications use Windows Registry keys and/or files to store the various features

generated by the program according to their necessity. This information might include licensing,

recent actions, and settings as shown in Figure 3.1.4 below:

19

 Figure 3.1.4 - Windows Registry

 A batch file was created in order to perform this task. Written using the DOS command

line and scripting language, the code enumerated through the entire operating system. It then

generate a log of all the files, the directory structure, and all of the registry keys present in the

Windows operating system at that time to be saved to the Running partition. This step was

necessary for the analysis and comparison of both datasets when trying to determine the

classification of the unknown binary code.

The batch file is called “snapshot.bat.” This file was used twice, before and after the

possible malicious code ran. If a system update, or a new software tool, needs to be installed this

will be done and a new Clean partition image will be created. If a new Clean partition image is

created, then we have to also grab a new before dataset by running the snapshot script against the

20

Clean partition. The snapshot script always runs in the Running partition, but the code will

access different partitions depending when we are running the code. If we are running it to grab

the before dataset, the code will then point to the Clean partition. If we are running it to grab the

after dataset, the code will point to the Experimental partition.

All of the dataset sets that were captured by the snapshot script were saved for analysis

and comparison by our custom software. A specific and easy to understand naming convention

was adopted for the system. When saving the datasets, the snapshot script created directories

using the following naming convention, which is in the form of “mm_dd_yyyy_xxx” that

represents a date followed by the number of occurrences. An example of this would be

04_02_2014_001, which corresponds to April 2nd, 2014 for the 1st time in that day, as it is shown

in Figure 3.1.5 below:

Figure 3.1.5 – Directory Naming Convention

3.1.6 RegKeg

21

 In addition to the tools described above, this project required the development of

custom software in order to collect the data during the training process, perform the data

analysis, and produce reports on the status of the binary code to determine whether the tested

software remained benign or became affected by the malicious code.

 The training process is a process wherein well-known binary codes were run against the

system to collect the data. During the training process, the data was stored for further analysis

and comparison against the entire dataset. This analysis was later used to get the average, the

median, and the standard deviation for the scores found in the datasets. This tool, named

RegKeg, performs the following tasks:

• Create the Before Key Dataset

• Binary Code Runner

• Create the After Key Dataset

• Build the Suspicious Dataset File

• Build General Statistics Data Points

• Before/After Dataset Analysis

• Classification of Binary Code

This is a sequence that the user needs to follow in order to use RegKeg and to be able to

classify the binary code as it is shown in Figure 3.1.6 below:

22

Figure 3.1.6 – RegKeg Workflow Diagram

3.1.6.1 Create the Before Key Dataset

 This is the first operation to be performed when using RegKeg. This is done when the

Clean partition image is established and is available to be cloned. When the user clicks on this

menu item command, the RegKeg code will then call the snapshot.bat file. The scripting file will

then enumerate through the system keeping a log of the entire file system and of all the registry

key entries that are available for the Windows operating system. The batch file will also save the

before dataset to the directory according to the naming convention that was described earlier in

this chapter.

3.1.6.2 Binary Code Runner

23

The next operation is to restart the machine using the Experimental partition. As soon as

the system is restarted, a command prompt window will appear and will ask the user to provide

the path of where the binary code is present, in order to run the code, as shown in Figure 3.1.7

below:

Figure 3.1.7 – Binary Code Runner

The binary code runner will then run the unknown code, and will halt the system for five

minutes, which is enough time for the unknown code to complete the changes to the MaCod

System. This operation is performed to allow the binary code to perform its changes to the

system and to allow analysis of the changes at a later time.

3.1.6.3 Create the After Key Dataset

24

The action to create the after key dataset is performed by the snapshot script to grab the

changes made by the unknown code, which will then call it the after dataset. This third module is

run from the Running partition against the Experimental partition. The scripting file will

enumerate through all of the system files and registry keys for the Windows system on the

Experimental partition. This action will collect and log all of the files and entries for the system.

Based on this collected data, RegKeg will compare the before and after dataset to detect any

changes made to the system. This will later be used to generate the reports necessary for the

software to classify the unknown binary code.

3.1.6.4 Build Suspicious Dataset File

The suspicious dataset is a list of all the files and registry keys that are found in the after

dataset that were not present in the corresponding before dataset. All files and registry keys are

compiled into a single suspicious dataset. This is done for the entire binary code sets that have

ran in the experimental system. If the same registry key is found more than once, the weight for

that key will be incremented by each time that it is found in the training data set.

3.1.6.5 Build General Statistics Data Points

This module will gather data points from all of the “statistics.txt” report files, described

in the next section, that were generated during the analysis of each and every after dataset. This

operation were performed to compile the statistics data points that were gathered during the

training process into a single file, as it is show below in Figure 3.1.8:

25

Figure 3.1.8 – Statistics Report

3.1.6.6 Before and After Dataset Analysis and Reporting

When the user initiates this module, by clicking on the “Start Dataset Analysis and

Reporting” button, five parameters need to be provided in order for the software to perform its

tasks. If one of these necessary parameters is not provided, the user will receive an alert message

and it will not proceed until the necessary parameter information is supplied as show in Figure

3.1.9 below:

26

Figure 3.1.9 – Parameter Message Alert

The necessary parameters that need to be supplied for this module to run are as follows:

• Path for the before dataset

• Path for the after dataset

• Path for outputting and saving analysis reports

• Path for the Master Suspicious Key dataset file

• Path for the Scoring Key dataset file

When the user supplies all five parameters, the module will start and it will perform

several tasks:

• Read the before dataset

27

• Create the before registry key dictionary

• Read the after dataset

• Create the after registry key dictionary

• Create scoring dictionary

• Compare datasets

• Display comparison results

When reading the before dataset, the program will follow the path provided by the user

and it will retrieve two files. These files are the “registry.reg” and the “FileSys.txt” files that are

generated by the before batch file.

After retrieving these two files, the program will then create a before registry key

dictionary. In computer science, a dictionary is a data structure that is capable of storing objects

based on a unique key [27]. It is a key/value pair data structure that allows direct access to the

object by providing the key. By using the dictionary data structure, RegKeg will quickly find out

if a registry key is already part of the dictionary or not which allows the program to quickly

retrieve the object by providing the registry key.

 The same steps described above for the before dataset are used for the after dataset. After

these steps are performed on the before and after datasets, the program will then have a

dictionary containing a list of the before registry keys and another one containing the list of the

after registry keys.

 After this is complete, the program will then read the entire dataset from the

“scoring_keys.txt” file, which is found in the fifth parameter that is provided by the user before

running this module. The “scoring_keys.txt” file has 3 values separated by a “|” (pipe character)

28

per line and this will be stored into a dictionary of keys and values. The first value is the registry

key entry in the form of a string. The second value is the frequency that the registry key appears

in the training dataset, represented by an integer. The third and last value is the weight that this

key will have during the analysis and classification of the binary code.

 The fourth task that happens in this module is to compare the before and after dictionary

of registry keys. The way this is done is by going through each and every registry key in the

before dictionary and doing a look up for the same key in the after registry key dictionary. It will

then compare the values for this key. If the values are the same, nothing will happen but if they

are different, for any reason, we will then log both values of the keys to a report file that later is

used during the analysis process. When the comparison module is initiated, and the process

occurs, the system uses various reporting and log files to help in the analysis process. Below is a

list of these reporting and log files:

• Analysis.txt

• NonPresentKeys.txt

• Scoring_results.txt

• Statistics.txt

The “Analysis.txt” reporting file will log the value differences for the before and after

registry key. The name of the registry key will be logged in one line, followed by the value for

the before key and after key on separate lines. To separate the keys, and to make it easier to read

and analyze, each entry is separated by dashes. Below is an example of what these entries look

like:

29

[HKEY_LOCAL_MACHINE\reg6\Microsoft\DirectDraw\MostRecentApplication]

BEFORE:

"Name"="install_flashplayer11x32_mssd_aih.exe"

"ID"=dword:5010882b

AFTER:

"Name"="vlc-cache-gen.exe"

"ID"=dword:51f83c87

--

The other piece of data that is important for the analysis of the binary code, that is stored

in the “NonPresentKeys.txt” file, is the registry key that is not found in the after dictionary of

registry keys. Like the “Analysis.txt” file, this file follows the same criteria, which is key and

value of the registry key followed by dashes as shown below:

Key: [HKEY_LOCAL_MACHINE\reg6\Classes\VLC.xm]

Value: @="VLC media file (.xm)"

--

 The next piece of data saved is what we call the scoring result dataset. This is saved into

the “scoring_result.txt” file. For all the registry keys that are not found in the before dataset, but

are contained in the scoring keys dictionary set, the registry key value will be separated by an

equal sign followed by the weight for that key will be saved to the file. Here is an example:

30

[HKEY_LOCAL_MACHINE\reg2\Software\Microsoft\Windows\ShellNoRoam\BagMRU\0\2\1]=13

 After all the keys have been read, the program will then total the scores for all the keys

found in the scoring results dictionary. Then, it will take the average, median, and standard

deviation for this dataset against all of the datasets that were collected throughout the experiment

process.

 After comparing the registry key datasets, the system will then compare the before and

after file system data files. The way that this is accomplished is by reading the before and after

file system files into the List of strings data type, and storing it in memory. A List in computer

data structures is a collection of items where each item holds a relative position with respect to

the others [28]. After the before and after list of file system entries are stored in the List objects,

the system will perform a comparison and will report back with an entry to the

“file_system_comparer.txt” file. The program will then state the name of the file that was not

present in the before dataset, but is now present in the after dataset List file system.

 After this process is accomplished, and all the reports are generated, the program will

display the comparison results to the user in the form of an alert popup message. The message

will state that the process has finished successfully, and it will also show the time that it took to

run this module, the number of registry key mismatches, and the total score for all the keys that

were found as show in Figure 3.1.10 below:

31

 Figure 3.1.10 – Registry Comparison Results Message

3.1.6.7 Classification of Binary Code

 After gathering all of the analysis reports and the scoring results data, the code may be

classified. In this module, the program will attempt to classify the binary code as being benign or

malicious. In order for this module to run, the user will need to provide one parameter, which is

the statistics.txt file for that binary. This file was generated in the previous step, as we

performed the before and after dataset analysis. After the system reads this file, it will then

compare the values to specific threshold values that the system learned during the training

32

process and the collection of the entire dataset that was executed during this experiment. During

the training and analysis process, we have learned that a malicious code will usually have an

average score greater than 0.02 and a standard deviation greater than 3.6 out of the total score of

all the datasets that were studied and analyzed in the system. If this is the case, the program will

classify the binary code as being malicious. If this is not the case, the program will classify it as

being benign, which will be reflected in the form of a popup alert message as shown in Figure

3.1.11:

Figure 3.1.11 – Binary Code Classification Alert Message

 With this methodology in place, the system is able to identify and classify the type of

binary code that was run in the system. This will help during the research process of a security

analyst when trying to find out the results of what the binary code performed in the system.

33

CHAPTER 4: SYSTEM IMPLEMENTATION

This chapter describes the MaCod low-level system implementation details. It will

describe the implementation of the before-after DOS batch script, the naming convention used to

create the directories where the datasets are saved, and the implementation details of the RegKeg

program and how it was used to gather and analyze the data necessary for this project.

4.1 Before and After Batch Script

 To help with the process of gathering the dataset before and after running the unknown

code in the Experimental Partition, we developed a Windows batch script named before-after.bat

to automate the process. These scripts are responsible for taking a snapshot of all the Windows

Registry keys and files in the system before and after we run the suspicious code. Below is a

snippet of the before-after.bat batch file used by the MaCod system.

echo Loading Reg2 Hive - HKEY_CURRENT_USER KEY

reg.exe LOAD HKLM\reg2 "C:\Documents and Settings\Bruno\NTUSER.DAT"

echo Exporting Reg2 Hive - HKEY_CURRENT_USER KEY

reg.exe EXPORT HKLM\reg2 reg2.reg

echo.

echo Loading Reg6 Hive - HKEY_LOCAL_MACHINE - SOFTWARE KEY

34

reg.exe LOAD HKLM\reg6 "C:\WINDOWS\system32\config\software"

echo Exporting Reg6 Hive - HKEY_LOCAL_MACHINE - SOFTWARE KEY

reg.exe EXPORT HKLM\reg6 reg6.reg

echo.

 On the above piece of code used in the Windows batch file, the statement ‘echo’ is used

just for printing and outputting purposes. It does not perform any action on the system itself.

reg.exe LOAD HKLM\reg2 "C:\Documents and Settings\Bruno\NTUSER.DAT"

 The above line of code is responsible for loading all the user data, which in this example

is my personal user data into the reg2 key, which will be placed in the “HKey_Local_Machine”

parent node.

reg.exe EXPORT HKLM\reg2 reg2.reg

 On this other command we just export all of the registry key data that was just loaded

into the reg2 to a file called reg2.reg. We perform steps like the one just described for various

data such as: User, Security Account Manager, Software, System, and Configuration data files.

We then use the below command to bundle all of the registry key data files that were created into

a single file that we call registry.reg file.

copy reg2.reg + reg4.reg + reg6.reg + reg7.reg + reg8.reg registry.reg

35

Another feature from these scripts is to get a directory listing of the entire system drive.

This will get a listing of all the files and directories that are present in the HD drive. The reason

why this is important is because the system will be able to compare and find out if any files or

directories were created when running the suspicious binary code. This is the Windows

command that performs this action:

pushd C:\

dir /s /b > "%CWD%\FileSys.txt"

popd

The first line is responsible for saving the C:\ drive directory structure including files

present into memory [29]. The dir command presented on the 2nd line, tells the system to display

the list of files and subdirectories in a directory. The additional parameters /s /b, specifies to the

system not to include heading or summary information and to list in an alphabetical order [30].

Now this additional part of the 2nd command, > "%CWD%\FileSys.txt", tells the Windows

system instead of showing the output on the command screen, to write the contents to file called

FileSys.txt which is to be written to the current directory of where the batch file is running.

Lastly the 3rd command, popd, is the one that tells the system to take all of these directories

listing that are present in memory and to pop them, or in another words output them.

4.2 Directory Naming Convention

 For every suspicious code that is run in the MaCod system for analysis, the system will

generate reports and datasets for before and after running of the suspicious code. A naming

36

convention for these directories of where the datasets were saved was adopted for easy

identification and categorization. The datasets and report files are saved in a subdirectory in the

form of “mm_dd_yyyy_xxx” to the local path: ‘F:\Thesis\’. Here is part of the code in C# that is

responsible for creating a Windows process that will call the snapshot.bat scripting file, wait for

it to finish running and then after that it will create the directory using the naming convention

mentioned above and then it will save the files to that directory:

 private static void CallBatchFile()
 {
 Process batchProcess = new Process();
 batchProcess.StartInfo.FileName = DriveLetter.Name + BATCH_FILE_PATH;
 try
 {
 batchProcess.Start();
 batchProcess.WaitForExit();
 }
 catch (Exception e)
 {
 MessageBox.Show("Exception: " + e.Message);
 }
 }

The above method is responsible for calling the after batch file, waiting for it to run and

generating all of registry key and file system data. This piece code shown below is responsible

for creating the subdirectory where the files will be saved, but before it will check if a

subdirectory is already present: if it is, it will increment the number, as shown in the piece of

code below:

 private void BuildSubDirectoryPath()
 {
 //start with count
 int count = 1;
 // get subdirectory to copy files
 string subDirectoryName = GetSubdirectoryPath(count);

 //while subdirectory exist
 while (Directory.Exists(subDirectoryName))
 {

37

 //increment counter
 count++;
 //try again and see if exists
 subDirectoryName = GetSubdirectoryPath(count);
 }

 //when it does not exist, create the subdirectory
 Directory.CreateDirectory(subDirectoryName);
 //Copy files to the specified subdirectory
 CopyFiles(subDirectoryName);
 }

After creating the subdirectory the program will then copy the files to that directory.

Below is the piece that handles this functionality:

 //Copy files to the subdirectory specified
 private static void CopyFiles(string subDirectoryName)
 {
 string path =
 _snapshotStatus == SNAPSHOT_STATUS.BEFORE
 ? BEFORE_DATA_FILES_DIRECTORY
 : AFTER_DATA_FILES_DIRECTORY;

 //Get list of all files that need to be copied
 string[] files = Directory.GetFiles(DriveLetter.Name + path);

 foreach (string f in files)
 {
 try
 {
 //copy the file to the subdirectory specified
 File.Copy(f, subDirectoryName + @"\" + Path.GetFileName(f));
 }
 catch (IOException e)
 {
 Console.WriteLine("IoException: " + e.Message);
 }
 }
 }

The code seen above is responsible for building the subdirectory for all the analysis data

in the form of “mm_dd_yyyy_xxx”, being month, day, year, number of occurrences for that

given day, respectfully that is generated by the After Batch script file. As you can see it takes

38

many things into account, if the directory is available, if it has less than 10 subdirectories that

meet the date of when the code is run. We do this to facilitate our process of data analysis.

4.3 Binary Code Runner

This module is responsible for running the suspicious binary code in the Experimental

Partition. This module was created using the DOS batch scripting language. As the system loads

from the Experimental Partition, the binary code runner will open a Windows console window,

prompting the user to provide the full path of where the suspicious code is located. Scripting

programming is still very popular and an easy way to code when small functionality is need and

no GUI is necessary to interact with the user. In order for this code to start every time that the

system starts, this code was added to the Windows startup directory. In order to use this

Windows functionality, the user just needs to copy the code that needs to be run during startup of

the system to the Windows startup Directory.

To enter the path of the binary code that he wishes to run, the user is allowed to choose

one of the four types of binary code of the file types shown below:

• .exe

• .msi

• .rar

• .zip

39

The .exe and .msi (Microsoft Installer) types of files are similar in that they both

install some code onto a system. The .rar and .zip files are compressed files. When the

.rar or .zip files are run, the script will uncompress the file to the ‘C:\Code\’ directory and

will search for the .exe or .msi file located in this directory or its subdirectories. If for any

reason the user tries to run a different file, the user will get a message asking him to enter

a valid file, as is shown below in Figure 4.3.1:

Figure 4.3.1 – Unacceptable File Type Message

This will repeat until the user enters one of the allowed file types. After an

acceptable file type is entered the system will run the code and it will restart the system

after a period of 300 seconds, or five minutes, as it is shown by the code below:

:DONE

::RESTART THE COMPUTER

shutdown.exe -r -t 300

exit

4.4 RegKeg

40

 As previously stated experimental data was collected through the use of a Windows batch

script file. This data included all system and registry files before and after the possibly infected

or malicious code was run. The purpose of RegKeg was to compare these batch files and run

multiple experiments to determine if the code run on the system was in fact malicious.

 RegKeg, written in Windows C# utilizing Visual Studio 2010 as the integrated

development environment (IDE), is a menu driven Graphical User Interface (GUI) application,

utilizing multiple threads to separate the user interface updates from the file processing and

analysis to enable the GUI content to be update while the processing of the tasks are occurring.

The RegKeg program consists of the following modules:

• Create the Before and After Key Dataset

• Build Suspicious Dataset File

• Build General Statistics Data Points

• Before and After Dataset Analysis and Reporting

• Classification of Unknown Binary Code

4.4.1 Create the Before and After Key Dataset

This is the module that calls the Windows batch script file, snapshot.bat. This module is

used to create both the before and the after dataset since they are similar to each other. In order to

share the same module, when the user clicks on the menu to create the before key dataset, we

pass in a snapshot status variable that will read “before”. By doing this we are able to let the

41

program know the correct batch file that it needs to call, while still re-using the same code to

generate the after dataset as well. Below is code that will allow this functionality:

string path =

 _snapshotStatus == SNAPSHOT_STATUS.BEFORE
 ? BEFORE_BATCH_FILE_PATH
 : AFTER_BATCH_FILE_PATH;

This module also creates the subdirectories using the naming convention described in the

previous section, and copies the before and after dataset files that are generated to the

subdirectory that was just created by the module. After this process is complete, an alert message

will be displayed to the user.

4.4.2 Build Suspicious Dataset File

In this module RegKeg will grab all of the keys that are in the “nonPresent.txt” report

files. This report is generated by the program for every binary code that is run in the system by

comparing the before and after datasets. For every key that is found in the after dataset and not

found in the before dataset, an entry will be logged to the “nonPresent.txt” report file. To run this

module the user needs to enter the path for the parent directory of where the datasets are found.

For any reason, if the user tries to run the program without providing this parameter, the program

will give an alert message to the user reminding him to enter the appropriate information needed

to run this module, as show in figure 4.4.1 below:

42

Figure 4.4.1 – Parent Path Alert Message

 After the correct path is provided the program will search for all of the directories that

contains the desired “nonPresentKey.txt” report file, by using the below code:

string[] fileNames = Directory.GetFiles(this._parentDirectoryPath, "nonPresentKeys.txt",
SearchOption.AllDirectories);

 The above code will return an array of file objects, containing the full path of where the

files are located, its name and other useful properties related to the files. The program then will

loop through the list of files and will open the file to be read using the below code:

string[] keys = System.IO.File.ReadAllLines(filename);

At this point the program will loop through all of the registry keys in the dictionary, if

any of these keys are not present in the dictionary of unique keys it will then be added to this

dictionary. If the current key being read is present in the dictionary of unique keys it will then be

skipped and it will be added to the dictionary of duplicate keys. After completing this process,

the module will generate a report file called “master_suspicious_keys.txt” that will contain the

list of registry keys that were found in the after datasets and that were not present in the before

datasets.

43

4.4.3 Build General Statistics Data Points

This module is responsible for aggregating all of the statistics data points into a single

easy to read comma separated value (CSV) file that can be opened with Microsoft Excel

software. To initiate this module the user needs to click on the menu file button that reads “Build

General Statistics Data Points” and also provide the path to the parent directory of where all of

the “statistics.txt” report files are found. For every dataset that was compared and analyzed in the

system, a statistics report file was generated and saved for later analysis and reporting. If the user

fails to provide the path for this directory, the program will display a message to the user that

reads: “Please select a parent path of where to look for the ‘statistics.txt’ file”. The program will

not proceed until this parameter is provided.

After providing the parameters necessary to run this module, the program will proceed by

going through the parent directory path that was provided and will search for all the files within

that directory and its subdirectories that have the name of “statistics.txt”. After locating all of

these files, the content of these files will be read into memory and later on used to generate a

single file containing each value separated by a comma. Below is the code that performs these

actions:

 List<string> dataFiles = GetAllDataFiles();
 GetDataFromFiles(dataFiles);
 WriteGrandTotal(GRAND_TOTAL_STATISTICS);
 WriteCsvStatisticsData(GetStatisticsData(), this._parentDirectoryPath + @"statistics.csv");

44

After completing its tasks, the program will alert the user that the code has finished by

displaying an alert message.

4.4.4 Before and After Dataset Analysis and Reporting

In this module RegKeg will compare the before and after datasets. In order to order to run

this module the user has to provide five parameters:

• Path for Before Data Files

• Path for After Data Files

• Path for Outputting Report Files

• Path for Master Suspicious Key File

• Path for Scoring Key File

If the user fails to provide any of these five parameters before attempting to run the

comparison module, the program will not proceed and it will display alert messages to the user,

as it is shown in the code below:

 //path for before dataset
 if (txtBeforeFilePath.Text == "") {
 MessageBox.Show("Please choose directory path for the before data
points", "Missing Directory Path", MessageBoxButtons.OK);
 isValid = false;
 }

 //path for after dataset
 if (txtAfterFilePath.Text == "") {
 MessageBox.Show("Please choose directory path for the after data points",
"Missing Directory Path", MessageBoxButtons.OK);
 isValid = false;
 }

45

 if (txtOutputFilePath.Text == "") {
 MessageBox.Show("Please choose directory path for outputting the report
files", "Missing Directory Path", MessageBoxButtons.OK);
 isValid = false;
 }

 //path for master suspicious key file
 if (txtMasterSuspiciousKeyFiles.Text == "") {
 MessageBox.Show("Please choose directory path for the Master Suspicious
Key file", "Missing Directory Path", MessageBoxButtons.OK);
 isValid = false;
 }

 //path for scoring file
 if (txtScoringFile.Text == "") {
 MessageBox.Show("Please choose directory path for the Scoring Key file",
"Missing Directory Path", MessageBoxButtons.OK);
 isValid = false;
 }

 The above code will check to see if the input parameters were valid, if they are not valid,

the program will return without performing the rest of the tasks for this comparison module.

After providing the appropriate parameters necessary to run this module, the program will then

search in the before directory path that was provided by the user, and it will search for the

registry and the file system files. The way that this is done is by searching the directory and

filtering the search by giving the file extension as its criteria. For the Registry files, we use .reg

and for the file system, we use the .txt file extension. This is the code that performs this task:

string[] regFiles = Directory.GetFiles(txtBeforeFilePath.Text,"*.reg");
string[] fileSystem = Directory.GetFiles(txtBeforeFilePath.Text, "*.txt");

After locating the registry file, the program will read the registry file into memory and

then parse its data. The way that a registry key is presented is in the form as shown below:

[HKEY_LOCAL_MACHINE\reg2\Control Panel]

46

"Opened"=dword:00000001

The registry key is shown in between the square brackets, [], and the next line is the

value for this registry key. What the above registry key is telling the Windows system is that the

Control Panel window was opened. This is true because the “Opened” property has the value of

1. So the way that the program identifies a registry key is by checking the line that is being read

if it starts and ends with a square bracket as it is shown in the piece of code below:

if (line.StartsWith("[") && line.EndsWith("]"))
 {
 //more code here

}

 Until the program finds another registry key, the line(s) that will be read are considered

the value for the previous key that was processed earlier. The following code segment performs

this functionality:

if (line == "" || lineCounter == 0)
{
 lineCounter++;
 continue;
}

if (line.StartsWith("[") && line.EndsWith("]"))
{
 try
 {
 if(key != null)
 {
 this._registryDictionary.Add(key, value);
 value = "";
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.Message);
 }
 key = line;
 }
 else
 {
 value += line + "\n";

47

 }

After processing the registry keys, the next step will be to read the system file. The

system file was generated by the snapshot.bat batch script file and will contain all the files and

directories for the system. RegKeg will then read this file and create a list of files. After finishing

creating the before dictionary and the list of files, the program will perform the same task but at

this time, targeting the after dataset. It will create the after registry key dictionary and the list of

system files for the after dataset.

The next step of the process is to read the scoring data file into memory and to create a

dictionary containing the registry key as the key and the frequency score that represents the

number of times that this key was found in the training datasets. The file is in the form of: Key |

Frequency. The pipe delimiter separates the key from the frequency. This is the segment of code

that performs this action:

values = line.Split('|');
 scoringSystem.Add(values[0], new FrequencyScore(

 Convert.ToInt32(values[1]),
 Convert.ToInt32(values[2])
));

The next task in the list is to compare the before and after datasets. This is done by going

through each and every registry key in the before and after dictionaries. The first thing it does is

to check to see if it the key is available in the before Dictionary. If it is available it will look to

see if the values match or not. If they match we do not need to do anything otherwise the key and

the different values will be written to the “Analysis.txt” report file. Now if the key is not

contained in the lookup dictionary, the program will check to see if this key is available in the

frequency score dictionary set, if this is the case, it will add this score to the dictionary of scoring

48

results, to later be used to generate the statistics data points. If the key is not contained in the

frequency score dictionary, then the program will log this information to the

“nonPresentKeys.txt” report data file. Below is the code that performs the described actions:

 if (lookup.ContainsKey(key))
 {
 //Values are different
 if (lookup[key] != target[key])
 {
 if (targetDict == Target.After)
 {
 //Write to Analysis.txt report file
 writer.WriteLine(key + System.Environment.NewLine);
 writer.WriteLine("BEFORE: " + System.Environment.NewLine + lookup[key]);
 writer.WriteLine("AFTER: " + System.Environment.NewLine + target[key]);
 writer.WriteLine("---");

 this._mismatchCount++;
 }
 }
 }
 else
 {
 //the key is not available in the lookup Dictionary

 //this key is found in the list of clean keys
 if (_cleanKeys.ContainsKey(key))
 continue;

 if (_frequencyScore.ContainsKey(key))
 {
 //it is found in the frequency score dictionary
 FrequencyScore scoring = this._frequencyScore[key];
 this._score += scoring.Score;
 scoringResults.Add(scoring.Score);
 result.WriteLine(key + "=" + scoring.Score);

 if (scoring.Score > maxScore)
 maxScore = scoring.Score;
 }
 else
 {
 //not found in the frequency dictionary
 //log it to the nonPresentKeys.txt report data file
 notPresentWriter.WriteLine("Key: " + key);
 notPresentWriter.WriteLine("Value: " + target[key]);
 notPresentWriter.WriteLine("--");

 //write to list of non present keys - build dictionary of suspicious keys
 nonPresentKeys.WriteLine(key);
 this._notPresentOnTargetDictionary++;
 }
 }

49

After going through all the keys, the last task for this module is to then calculate

all the statistical data points and it will log them into the “statistics.txt” report file. The

statistical points used are:

• Average

• Variance

• Standard Deviation

Before the module tries to do the calculations it will check to see if the score

integer is greater than zero. If this is the case, it will proceed with all the calculation

points, as shown below:

 if (this._score > 0)
 {
 result.WriteLine("TotalScore=" + this._score);
 statistics.WriteLine("TotalScore=" + this._score);

 double average = GetAverage(this._score, this._frequencyScore);
 result.WriteLine("Average=" + average);
 statistics.WriteLine("Average=" + average);

 double variance = GetVariance(scoringResults);
 result.WriteLine("Variance=" + variance);
 statistics.WriteLine("Variance=" + variance);

 double standardDeviation = GetStandardDeviation(variance);
 result.WriteLine("StandardDeviation=" + standardDeviation);
 statistics.WriteLine("StandardDeviation=" + standardDeviation);
 }

4.4.5 Classification of Unknown Binary Code

50

 This is the final module that the user will run for each binary code that he wants to

classify. In order to run this module the user needs to provide only one parameter, which is the

path for the “statistics.txt” data file for the binary code that he wishes to classify. After providing

this parameter, the program will proceed by reading the statistics.txt data file and storing the

information in a custom built object.

StatisticsReader reader = new StatisticsReader(txtOutputFilePath.Text);

After reading the contents of the statistics report, the module will then pass in this

information to another object, which will then analyze the data and attempt to classify the binary

code as being malicious or benign. The classification of the code is based on two data points that

we learn during the experiments and the training datasets analysis. These points are the mean and

the standard deviation of the current dataset in relation to the entire dataset that was gathered

during the training of the program. Here is the code that performs the classification:

private CODE_CLASSIFICATION DetermineCodeClassification()
 {
 if (this._statisticsData.Average > 0.02)
 {
 if (this._statisticsData.StandardDeviation > 3.6)
 {
 this._classificationPercentage = 100.0f;
 return CODE_CLASSIFICATION.MALICIOUS;
 }
 else
 {
 this._classificationPercentage = 75;
 return CODE_CLASSIFICATION.MALICIOUS;
 }
 }

 if (this._statisticsData.Average < 0.02)
 {
 if(this._statisticsData.StandardDeviation < 3.6)
 {
 this._classificationPercentage = 100.0f;
 return CODE_CLASSIFICATION.CLEAN;
 }
 else
 {

51

 this._classificationPercentage = 75;
 return CODE_CLASSIFICATION.CLEAN;
 }
 }

 this._classificationPercentage = 0;
 return CODE_CLASSIFICATION.UNKNOWN;
 }

In this chapter we present the system implementation for the MaCod System. With this

system and all the steps presented above, the user is able to run a suspicious binary code and

within minutes be able to classify the binary code as being benign or malicious.

52

CHAPTER 5: RESULTS

 This chapter focuses on the results of running a suspicious binary code in the MaCod

System. It describes the samples used to train the RegKeg system and the experimental sets that

were used to determine the results of the experiment. It will conclude with the results of this

approach.

5.1 Training RegKeg

This section describes the process that was used to train RegKeg. In order to train the

program, 66 sample datasets were collected and run against the system. Out of those 66 samples,

32 of them were known malicious code samples that were collected during the period of

February of 2012 until March of 2013 from the website: http://www.MalwareBlacklist.com. The

MalwareBlacklist.com website indexes URLs where malicious code samples are found. This

website is a public list of links to known malicious code executables. It is one of the most

frequently updated malicious code indexes available. For this project, the intention was to

classify fairly recent binary code of the following types:

• .exe

• .msi,

53

• .rar,

• .zip.

The other 34 samples used to train the system were known to be non-malicious binary

codes. The criteria for these benign samples were to be regular and popular used binary code

popularly used by the mass population. Some of the binaries collected and run against the

MaCod system were: Skype, Chrome, Winamp, ITunes, and Adobe PDF Reader. These samples

were collected from the period of April of 2013 until September of 2013. For the 66 samples that

were collected during a period of about a year and a half, the datasets were manually analyzed

for each and every log and report file that were generated by the RegKeg program. Table 5.1.1

shows the breakdown of samples and their classifications for the training process of the RegKeg

program:

Sample Number of Samples
Malicious samples 34

Benign samples 32

Table 5.1.1 – Training Sample Breakdown

5.1.1 Compare Before and After Datasets in Training Mode

The first step to training the system is to run the before and after datasets for each and

every training sample that is available. In this process the user selects the training mode option in

RegKeg program as shown in Figure 5.1.1 below:

54

Figure 5.1.1 – Training Mode Option

 After selecting the training mode in the RegKeg program the user can “Start the Dataset

Analysis and Reporting” module against the before and after datasets for every training dataset.

55

During this analysis and reporting module, different things occur and one of them is to log all of

the registry keys that are found in the after dataset that are not present in the before dataset to the

file that it is named: “nonPresent.txt”.

5.1.2 Build Suspicious Dataset List

The next step to train the system is to build the suspicious dataset list. In order to do that,

the user will provide the path for the parent directory where all of the training datasets are on the

disk. For every one of these datasets, a “nonPresent.txt” file will be included inside its directory.

The module will then loop through each and every subdirectory that is found in the path provided

by the user. The program will look for the “nonPresent.txt” file, once this file is located and read

into memory, all of its data, in this case every registry key, will be written to a different file that

it is called “master_suspicious_keys.txt”, keeping a tally of all of the Windows Registry keys

found in all of the training sets.

After building the “master_suspicious_keys.txt” file, there is another piece of code in the

same module that will read each registry key in the file and will store it in the memory of the

computer using a Dictionary data structure. Before inserting the newly read registry key into the

Dictionary data structure, it checks to see if the key same key has already been found and it is

present in the dictionary, if this is the case, the code will retrieve this dictionary key and will

increment the value for the key by one. This is done for every key that is found in the

“master_suspicious_keys.txt” report. This will give RegKeg the weight of each key in respect to

the training dataset. This information is kept in a separate file that it is called “scoring_keys.txt”

report file.

56

5.1.3 Malicious Code Patterns

Based on our preliminary tests, it can be noticed that malicious codes do use registry keys

to attach themselves to the operating system calls. By their nature, malicious codes use as few

resources as possibles. It can be noticed that the number of registry keys used by each malicious

code is rather limited.

On the other hand, the registry keys used by the malicious codes are those keys most

frequently used by all other applications. This fact will help malicious codes to disguise

themselves as regular code, and at the same time utilize most popular operating system calls.

In our project design, we need to provide an appropriate measure that will be based on

both registry keys frequencies and the number of specific registry keys used by the application to

be tested. We are expecting that the malicious application would in general use just a few of the

most frequent registry keys.

5.1.4 Compare Before and After Datasets in Experimental Mode

 The third step is similar to the first step but now the user will switch the mode to the

“Experimental” option. In addition to this the user needs to provide two additional parameters,

the path for the “master_suspicious_keys.txt” file and the path for the “scoring_keys.txt” file.

The first thing the program will do is to read the “master_suspicious_keys.txt” line by line and

insert the registry keys into a Dictionary data structure. Before it inserts the registry key into the

57

dictionary, it will check to see if it is already present, and if this is the case, it will then increment

the frequency for the given key by one.

 After creating the frequency dictionary, the module will compare the before and after

registry key files and for every key that it is found in the after dataset and that it is not present in

the before dataset, it will then retrieve the frequency score for this registry key from the

frequency Dictionary and it will add value to a running total for all of the keys. This is the

formula that was described above in words:

//Retrieve frequency from the Dictionary for the given key
 FrequencyScore scoring = this._frequencyScore[key];
 //Add this value to a running total of frequency score
 this._score += scoring.Score;

One can say that scoring is based on the frequencies

scoring = key_frequency

total_score = ∑ Score

After this process is completed and all of the keys from the after dataset are compared to

the before dataset, the module will then calculate the weight by key value. This is done by

dividing the total running score by the number of keys present in the frequency dictionary.

Below is the formula used to calculate this weight by key value:

//divide the running total by the number of keys in the frequency dictionary.

 double weightByKey = totalFrequencyScore / (double)frequencyScoreDictionary.Count;

Another statistical measure that is calculated is the standard deviation of the weight by

key for each dataset. All of this information is then saved to a report file called “statistics.txt”.

58

5.1.5 Build Statistical Data Points File

In this module the user will provide one parameter, which is the path of the parent

directory of where all of the training data samples are stored with their report files. Once this is

provided the module will then search this directory and its subdirectories for the report files

called “statistics.txt”. Upon finding a “statistics.txt” file it will read all of its data and write this

data to a comma separated value (csv) file having the following parameters:

• File path/name

• A flag indicating if the file is malicious or not

• Weight by key for this file

• The max score found when running the comparison for this file

• The standard deviation of weight by key

• The total score found

• The variance of weight by key

This module will gather all the data into a single file and will facilitate the analysis by the

user when trying to establish the threshold values needed to determine if a binary code is

malicious code or not.

5.2 Threshold Values

59

After training Regkeg using the training samples and building the “statistics.csv” the user

needs to carefully review this report file. By carefully reviewing the statistics.csv file, the file

that gathers all the data for all of the “statistics.txt” files from all of the samples into a single

place, for the purpose of this project and for the training samples used to train RegKeg, it was

discovered that the malicious codes usually have a weighted total score greater than 0.02 keys

per code and a standard deviation of weight by key greater than 3.6 keys per code in reference to

the training data that was collected for this experiment. And on the other hand this is the opposite

for the benign binary codes. They usually stay below that with a weighted total score of less than

0.02 and the standard deviation less than 3.6 of weight by key. Table 5.2.2 shows these statistical

data points broken down by the binary code classification:

Binary Code Classification Weight by Key Standard Deviation
Malicious samples > 0.02 > 3.6
Benign samples <= 0.02 <= 3.6

Table 5.2.2 – Statistical Points for Binary Classification

Good binary codes usually do not perform a lot of changes to the system so they have a

weighted total score less than 0.02 and the standard deviation less than 3.6 in reference to the

training samples. These values are the threshold values that were learned during the manual

process of analyzing each dataset sample. These values worked for the majority of the dataset

samples that were gathered during the experiment.

5.3 Experimental Sample Datasets

60

 After reviewing these 66 sample datasets and learning the threshold values that would

work for this research project, we ran the experiment on 30 sample datasets to test the quality of

the program, and to see if the program would be able to detect and classify the unknown binary

code. Out of the 30 experimental samples that were used, 15 of them were malicious codes and

the other 15 were benign code. Table 5.3.1 shows the results for the classification for the binary

codes:

Total Classifications Status of Classification % of Classification
3 Incorrect 10

27 Correct 90

Table 5.3.1 – Classification Status Results

 For the three incorrect classifications, the program classified them as being malicious

codes, but in really they were benign code. The remainders were correct, all of the malicious

code samples were classified as being malicious and twelve of the benign samples were

classified correctly, with only three being classified incorrectly as malicious.

5.4 Performance

The other important information that we learned was that for all the experimental sample

datasets, the duration of the process of comparing the before and after dataset and for the

generation of the reports and statistical files was done in less than one minute. Table 5.4.1 shows

the breakdown of the analysis duration period and in reference to its effectiveness:

61

Total Classifications
Duration (in mins) to

Generate Results Data
Status of

Classifications
27 Less than 1 minute Correct
3 Less than 1 minute Incorrect

Table 5.4.1 – Duration/Effectiveness of Status Results

The results shown above confirm the effectiveness of the MaCod system for the security

community. By following the steps and using the modules the way that they were described in

the previous section, we discovered that is possible to classify these kinds of binary codes using

the MaCod System and have a success rate of 90%. The system is able to analyze unknown

viruses that we have seen proliferate more recently. These results confirm the effectiveness of

the MaCod system in real-world environments.

62

CHAPTER 6: FUTURE WORK

 There are several enhancements that can be done to the MaCod System in the near future.

One of these features would be to analyze and compare the system file that is gathered during the

before and after snapshot of the system. This would give the research project another way to

gather statistical data and to use as a point of classification of the binary code as being malicious

or non-malicious.

 Another area that could be done to improve is to automate the gathering of the

experimental datasets. This could be done with a batch file that would run independently in the

Experimental partition to download the desired binary code and then call the Binary Code

Runner job to initiate the installation of the code and halt the system after five minutes. After

that, it would restart the system in the Running Partition and would call the snaphot.bat file to

gather the after dataset and to save its contents. After performing this task it would also restart

the system now in the Experimental partition and therefore repeat the process. This would enable

us to have a bigger experimental dataset to train the system. This is very helpful since during the

manual process, it usually took about thirty to forty minutes to gather each dataset.

63

APPENDICES

APPENDIX A: SOURCE CODE

Before Batch Script:

@echo off
echo Enter /? as command line argument for syntax summary: Before /?
echo.
echo.
if "%1"=="/?" goto Syntax
if "%1"=="-?" goto Syntax
if "%1"=="?" goto Syntax

echo Capturing system drive contents...
rem Setup a "Before" directory
rem mkdir Before
rem cd Before
mkdir %cd:~0,2%\Thesis\Before-After\Before
cd %cd:~0,2%\Thesis\Before-After\Before
set CWD=%cd%

rem Go to root of system drive and get dir listing of entire drive
rem pushd %SystemDrive%\
pushd C:\
dir /s /b > "%CWD%\FileSys.txt"
popd

echo Capturing Registry contents...
rem Now grab a copy of the registry
rem cmd /C regedit /e .\registry.reg
echo.

echo Loading Reg2 Hive - HKEY_CURRENT_USER KEY
reg.exe LOAD HKLM\reg2 "C:\Documents and Settings\Bruno\NTUSER.DAT"
echo Exporting Reg2 Hive - HKEY_CURRENT_USER KEY
reg.exe EXPORT HKLM\reg2 reg2.reg
echo.

echo Loading Reg4 Hive - HKEY_LOCAL_MACHINE - SAM KEY
reg.exe LOAD HKLM\reg4 "C:\WINDOWS\system32\config\sam"
echo Exporting Reg4 Hive - HKEY_LOCAL_MACHINE - SAM KEY
reg.exe EXPORT HKLM\reg4 reg4.reg
echo.

64

echo Loading Reg6 Hive - HKEY_LOCAL_MACHINE - SOFTWARE KEY
reg.exe LOAD HKLM\reg6 "C:\WINDOWS\system32\config\software"
echo Exporting Reg6 Hive - HKEY_LOCAL_MACHINE - SOFTWARE KEY
reg.exe EXPORT HKLM\reg6 reg6.reg
echo.

echo Loading Reg7 Hive - HKEY_LOCAL_MACHINE - SYSTEM KEY
reg.exe LOAD HKLM\reg7 "C:\WINDOWS\system32\config\system"
echo Exporting Reg7 Hive - HKEY_LOCAL_MACHINE - SYSTEM KEY
reg.exe EXPORT HKLM\reg7 reg7.reg
echo.

echo Loading Reg8 Hive - HKEY_USERS KEY
reg.exe LOAD HKLM\reg8 "C:\WINDOWS\system32\config\default"
echo Exporting Reg8 Hive - HKEY_USERS KEY
reg.exe EXPORT HKLM\reg8 reg8.reg
echo.

echo Copying reg [1-9] to registry.reg file
copy reg2.reg + reg4.reg + reg6.reg + reg7.reg + reg8.reg registry.reg
echo.

echo Unloading Reg2 Hive
reg.exe unload HKLM\reg2
echo.

echo Unloading Reg4 Hive
reg.exe unload HKLM\reg4
echo.

echo Unloading Reg6 Hive
reg.exe unload HKLM\reg6
echo.

echo Unloading Reg7 Hive
reg.exe unload HKLM\reg7
echo.

echo Unloading Reg8 Hive
reg.exe unload HKLM\reg8
echo.

echo Deleting reg [1-8] files
del reg2.reg reg4.reg reg6.reg reg7.reg reg8.reg

echo.

echo.

rem Use type to convert Unicode reg file into Ansi char set. Depends on
rem default code page on system. This may not work on a Unicode
rem language system like a Japanese OS version.
type registry.reg > Ansi_Registry.reg

rem For now, keep around the original Unicode version just in case ;)
REM ren registry.reg Uni_registry.reg

cd ..
echo.

65

echo System state captured...

exit /b

:Syntax
echo.
echo.
echo Before.bat: Creates a directory named "Before" in the current
echo directory and creates the following three files in
echo that directory:
echo 1) Filesys.txt This file contains a record of all
echo files on the system drive
echo 2) Ansi_Registry.reg This is an ANSI format file
echo containing the current registry contents.
echo 3) Uni_Registry.reg This is a Unicode format file
echo containing the current registry contents.
echo.
echo Usage: Before
echo.
echo NOTE: Before.bat has a companion batch file called After.bat that
echo performs the same operations and then calls Windiff to facilitate
echo analysis of the system's "before" and "after" states.
echo.
echo.
echo.
echo.
echo.

66

After Batch Script:

@echo off
echo Enter /? as command line argument for syntax summary: After /?
echo.
echo.
if "%1"=="/?" goto Syntax
if "%1"=="-?" goto Syntax
if "%1"=="?" goto Syntax

echo Capturing system drive contents...
rem Setup a "After" directory
mkdir %cd:~0,2%\Thesis\Before-After\After
cd %cd:~0,2%\Thesis\Before-After\After
set CWD=%cd%

rem Go to root of system drive and get dir listing of entire drive
rem change %SystemDrive% to Hard Drive Letter
rem pushd %SystemDrive%\
pushd C:\
dir /s /b > "%CWD%\FileSys.txt"
popd

echo Capturing Registry contents...
echo.
rem Now grab a copy of the registry
rem -- cmd /C regedit /e .\registry.reg

echo Loading Reg2 Hive - HKEY_CURRENT_USER KEY
reg.exe LOAD HKLM\reg2 "C:\Documents and Settings\Bruno\NTUSER.DAT"
echo Exporting Reg2 Hive - HKEY_CURRENT_USER KEY
reg.exe EXPORT HKLM\reg2 reg2.reg
echo.

echo Loading Reg4 Hive - HKEY_LOCAL_MACHINE - SAM KEY
reg.exe LOAD HKLM\reg4 "C:\WINDOWS\system32\config\sam"
echo Exporting Reg4 Hive - HKEY_LOCAL_MACHINE - SAM KEY
reg.exe EXPORT HKLM\reg4 reg4.reg
echo.

echo Loading Reg6 Hive - HKEY_LOCAL_MACHINE - SOFTWARE KEY
reg.exe LOAD HKLM\reg6 "C:\WINDOWS\system32\config\software"
echo Exporting Reg6 Hive - HKEY_LOCAL_MACHINE - SOFTWARE KEY
reg.exe EXPORT HKLM\reg6 reg6.reg
echo.

echo Loading Reg7 Hive - HKEY_LOCAL_MACHINE - SYSTEM KEY
reg.exe LOAD HKLM\reg7 "C:\WINDOWS\system32\config\system"
echo Exporting Reg7 Hive - HKEY_LOCAL_MACHINE - SYSTEM KEY
reg.exe EXPORT HKLM\reg7 reg7.reg
echo.

echo Loading Reg8 Hive - HKEY_USERS KEY
reg.exe LOAD HKLM\reg8 "C:\WINDOWS\system32\config\default"

67

echo Exporting Reg8 Hive - HKEY_USERS KEY
reg.exe EXPORT HKLM\reg8 reg8.reg
echo.

echo Copying reg [1-9] to registry.reg file
copy reg2.reg + reg4.reg + reg6.reg + reg7.reg + reg8.reg registry.reg
echo.

echo Unloading Reg2 Hive
reg.exe unload HKLM\reg2
echo.

echo Unloading Reg4 Hive
reg.exe unload HKLM\reg4
echo.

echo Unloading Reg6 Hive
reg.exe unload HKLM\reg6
echo.

echo Unloading Reg7 Hive
reg.exe unload HKLM\reg7
echo.

echo Unloading Reg8 Hive
reg.exe unload HKLM\reg8
echo.

echo Deleting reg [1-8] files
del reg2.reg reg4.reg reg6.reg reg7.reg reg8.reg

echo.

rem Use type to convert Unicode reg file into Ansi char set. Depends on
rem default code page on system. This may not work on a Unicode
rem language system like a Japanese OS version.
type registry.reg > Ansi_Registry.reg

rem For now, keep around the original Unicode version just in case ;)
rem ren registry.reg Uni_registry.reg

cd ..
echo.
echo System state captured...

exit /b

:Syntax
echo.
echo.
echo After.bat: Creates a directory named "After" in the current
echo directory and creates the following three files in
echo that directory:
echo 1) Filesys.txt This file contains a record of all
echo files on the system drive

68

echo 2) Ansi_Registry.reg This is an ANSI format file
echo containing the current registry contents.
echo 3) Uni_Registry.reg This is a Unicode format file
echo containing the current registry contents.
echo When the system state capture has completed, Windiff
echo is automatically started to facilitate the analysis of
echo of FileSys.txt and Ansi_Registry.reg files to look for
echo possible changes to the system state which will cause
echo certification failure. Consult Windiff help for directions
echo on how to use Windiff.
echo Windiff note: double click on the file name and use F7/F8
echo to quickly move to file differences.
echo The Outline button returns you to the file
echo overview window.
echo.
echo Usage: After
echo.
echo NOTE: After.bat has a companion batch file called Before.bat that
echo should be run prior to any Test Cases being performed as per the
echo U3 smart Application Certification Self Test document.
echo.
echo.
echo.
echo.
echo.

69

Binary Code Runner (Batch Script):

@ECHO OFF

SET rar=c:\winrar\RAR.exe
SET unrar=c:\winrar\UnRAR.exe
SET extracted_path=c:\code\

del %extracted_path%*.* /s /f /q

SET "INPUT_FILE_PATH="
:INPUT
SET /P INPUT_FILE_PATH=Please enter the full path for the code to be run:
if /I "%INPUT_FILE_PATH:~-3%" == "rar" (
 %unrar% x %INPUT_FILE_PATH% %extracted_path%
 FOR /R %extracted_path% %%G IN (*.exe) DO START %%G
 GOTO DONE
)

if /I "%INPUT_FILE_PATH:~-3%" == "zip" (
 UNZIP %INPUT_FILE_PATH% -d %extracted_path%
 FOR /R %extracted_path% %%G IN (*.exe) DO START %%G
 GOTO DONE
)

if /I "%INPUT_FILE_PATH:~-3%" == "exe" (
 START %INPUT_FILE_PATH%
 GOTO DONE
)

if /I "%INPUT_FILE_PATH:~-3%" == "msi" (
 START %INPUT_FILE_PATH%
 GOTO DONE
)

ECHO Please enter a valid file. It can be .exe, .msi, .zip, or .rar. Please
try again.
goto input

:DONE
::RESTART THE COMPUTER
shutdown.exe -r -t 300
exit

70

RegKeg (.NET/C# Program):

/*
 * File: AssemblyInfo.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System.Reflection;
using System.Runtime.InteropServices;

// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("RegKeg")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("Microsoft")]
[assembly: AssemblyProduct("RegKeg")]
[assembly: AssemblyCopyright("Copyright © Microsoft 2011")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(false)]

// The following GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid("ae1edc04-412b-4cdc-b3a4-a9d24e4fc8fe")]

// Version information for an assembly consists of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Build and Revision Numbers
// by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

<?xml version="1.0" encoding="utf-8"?>

<!--
/*
* File: Resources.resx
* Project: Master's Thesis
* Author: Bruno Nader

71

* Adviser: Dr. Hrvoje Podnar
* Date: May 20, 2014
*/
-->
<root>
 <!--
 Microsoft ResX Schema

 Version 2.0

 The primary goals of this format is to allow a simple XML format
 that is mostly human readable. The generation and parsing of the
 various data types are done through the TypeConverter classes
 associated with the data types.

 Example:

 ... ado.net/XML headers & schema ...
 <resheader name="resmimetype">text/microsoft-resx</resheader>
 <resheader name="version">2.0</resheader>
 <resheader name="reader">System.Resources.ResXResourceReader, System.Windows.Forms,
...</resheader>
 <resheader name="writer">System.Resources.ResXResourceWriter, System.Windows.Forms,
...</resheader>
 <data name="Name1"><value>this is my long string</value><comment>this is a
comment</comment></data>
 <data name="Color1" type="System.Drawing.Color, System.Drawing">Blue</data>
 <data name="Bitmap1" mimetype="application/x-microsoft.net.object.binary.base64">
 <value>[base64 mime encoded serialized .NET Framework object]</value>
 </data>
 <data name="Icon1" type="System.Drawing.Icon, System.Drawing"
mimetype="application/x-microsoft.net.object.bytearray.base64">
 <value>[base64 mime encoded string representing a byte array form of the .NET
Framework object]</value>
 <comment>This is a comment</comment>
 </data>

 There are any number of "resheader" rows that contain simple
 name/value pairs.

 Each data row contains a name, and value. The row also contains a
 type or mimetype. Type corresponds to a .NET class that support
 text/value conversion through the TypeConverter architecture.
 Classes that don't support this are serialized and stored with the
 mimetype set.

 The mimetype is used for serialized objects, and tells the
 ResXResourceReader how to depersist the object. This is currently not
 extensible. For a given mimetype the value must be set accordingly:

 Note - application/x-microsoft.net.object.binary.base64 is the format
 that the ResXResourceWriter will generate, however the reader can
 read any of the formats listed below.

 mimetype: application/x-microsoft.net.object.binary.base64
 value : The object must be serialized with
 : System.Serialization.Formatters.Binary.BinaryFormatter

72

 : and then encoded with base64 encoding.

 mimetype: application/x-microsoft.net.object.soap.base64
 value : The object must be serialized with
 : System.Runtime.Serialization.Formatters.Soap.SoapFormatter
 : and then encoded with base64 encoding.

 mimetype: application/x-microsoft.net.object.bytearray.base64
 value : The object must be serialized into a byte array
 : using a System.ComponentModel.TypeConverter
 : and then encoded with base64 encoding.
 -->
 <xsd:schema id="root" xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xsd:element name="root" msdata:IsDataSet="true">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="metadata">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" />
 <xsd:attribute name="type" type="xsd:string" />
 <xsd:attribute name="mimetype" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="assembly">
 <xsd:complexType>
 <xsd:attribute name="alias" type="xsd:string" />
 <xsd:attribute name="name" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="data">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0"
msdata:Ordinal="1" />
 <xsd:element name="comment" type="xsd:string" minOccurs="0"
msdata:Ordinal="2" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" msdata:Ordinal="1" />
 <xsd:attribute name="type" type="xsd:string" msdata:Ordinal="3" />
 <xsd:attribute name="mimetype" type="xsd:string" msdata:Ordinal="4" />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="resheader">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0"
msdata:Ordinal="1" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:complexType>

73

 </xsd:element>
 </xsd:schema>
 <resheader name="resmimetype">
 <value>text/microsoft-resx</value>
 </resheader>
 <resheader name="version">
 <value>2.0</value>
 </resheader>
 <resheader name="reader">
 <value>System.Resources.ResXResourceReader, System.Windows.Forms, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
 </resheader>
 <resheader name="writer">
 <value>System.Resources.ResXResourceWriter, System.Windows.Forms, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
 </resheader>
</root>

/*
 * File: Resources.Designer.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

//--
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:4.0.30319.1022
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//--

namespace RegKeg.Properties {
 using System;

 /// <summary>
 /// A strongly-typed resource class, for looking up localized strings, etc.
 /// </summary>
 // This class was auto-generated by the StronglyTypedResourceBuilder
 // class via a tool like ResGen or Visual Studio.
 // To add or remove a member, edit your .ResX file then rerun ResGen
 // with the /str option, or rebuild your VS project.

[global::System.CodeDom.Compiler.GeneratedCodeAttribute("System.Resources.Tools.StronglyT
ypedResourceBuilder", "4.0.0.0")]
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
 internal class Resources {

 private static global::System.Resources.ResourceManager resourceMan;

74

 private static global::System.Globalization.CultureInfo resourceCulture;

[global::System.Diagnostics.CodeAnalysis.SuppressMessageAttribute("Microsoft.Performance"
, "CA1811:AvoidUncalledPrivateCode")]
 internal Resources() {
 }

 /// <summary>
 /// Returns the cached ResourceManager instance used by this class.
 /// </summary>

[global::System.ComponentModel.EditorBrowsableAttribute(global::System.ComponentModel.Edi
torBrowsableState.Advanced)]
 internal static global::System.Resources.ResourceManager ResourceManager {
 get {
 if (object.ReferenceEquals(resourceMan, null)) {
 global::System.Resources.ResourceManager temp = new
global::System.Resources.ResourceManager("RegKeg.Properties.Resources",
typeof(Resources).Assembly);
 resourceMan = temp;
 }
 return resourceMan;
 }
 }

 /// <summary>
 /// Overrides the current thread's CurrentUICulture property for all
 /// resource lookups using this strongly typed resource class.
 /// </summary>

[global::System.ComponentModel.EditorBrowsableAttribute(global::System.ComponentModel.Edi
torBrowsableState.Advanced)]
 internal static global::System.Globalization.CultureInfo Culture {
 get {
 return resourceCulture;
 }
 set {
 resourceCulture = value;
 }
 }
 }
}

/*
 * File: Settings.Designer.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

//--

75

// <auto-generated>
// This code was generated by a tool.
// Runtime Version:4.0.30319.1008
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//--

namespace RegKeg.Properties {

 [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]

[global::System.CodeDom.Compiler.GeneratedCodeAttribute("Microsoft.VisualStudio.Editors.S
ettingsDesigner.SettingsSingleFileGenerator", "10.0.0.0")]
 internal sealed partial class Settings :
global::System.Configuration.ApplicationSettingsBase {

 private static Settings defaultInstance =
((Settings)(global::System.Configuration.ApplicationSettingsBase.Synchronized(new
Settings())));

 public static Settings Default {
 get {
 return defaultInstance;
 }
 }
 }
}

/*
 * File: AboutRegKeg.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;
using System.Linq;
using System.Reflection;
using System.Windows.Forms;

namespace RegKeg
{
 partial class AboutRegKeg : Form
 {
 public AboutRegKeg()
 {
 InitializeComponent();

76

 this.Text = String.Format("About Dynamic Analysis Using a Live System");
 this.labelProductName.Text = "Registry Key Analyser";
 this.labelVersion.Text = "Version: 3.1.1";
 this.labelCopyright.Text = "Copyrights: Bruno Nader";
 this.labelCompanyName.Text = "Southern Connectictut State University";
 this.textBoxDescription.Text = "A program that analysis snapshots before and
after and uknown piece of code is run";
 }

 #region Assembly Attribute Accessors

 public string AssemblyTitle
 {
 get
 {
 object[] attributes =
Assembly.GetExecutingAssembly().GetCustomAttributes(typeof(AssemblyTitleAttribute),
false);
 if (attributes.Length > 0)
 {
 AssemblyTitleAttribute titleAttribute =
(AssemblyTitleAttribute)attributes[0];
 if (titleAttribute.Title != "")
 {
 return titleAttribute.Title;
 }
 }
 return
System.IO.Path.GetFileNameWithoutExtension(Assembly.GetExecutingAssembly().CodeBase);
 }
 }

 public string AssemblyVersion
 {
 get
 {
 return Assembly.GetExecutingAssembly().GetName().Version.ToString();
 }
 }

 public string AssemblyDescription
 {
 get
 {
 object[] attributes =
Assembly.GetExecutingAssembly().GetCustomAttributes(typeof(AssemblyDescriptionAttribute),
false);
 if (attributes.Length == 0)
 {
 return "";
 }
 return ((AssemblyDescriptionAttribute)attributes[0]).Description;
 }
 }

 public string AssemblyProduct
 {

77

 get
 {
 object[] attributes =
Assembly.GetExecutingAssembly().GetCustomAttributes(typeof(AssemblyProductAttribute),
false);
 if (attributes.Length == 0)
 {
 return "";
 }
 return ((AssemblyProductAttribute)attributes[0]).Product;
 }
 }

 public string AssemblyCopyright
 {
 get
 {
 object[] attributes =
Assembly.GetExecutingAssembly().GetCustomAttributes(typeof(AssemblyCopyrightAttribute),
false);
 if (attributes.Length == 0)
 {
 return "";
 }
 return ((AssemblyCopyrightAttribute)attributes[0]).Copyright;
 }
 }

 public string AssemblyCompany
 {
 get
 {
 object[] attributes =
Assembly.GetExecutingAssembly().GetCustomAttributes(typeof(AssemblyCompanyAttribute),
false);
 if (attributes.Length == 0)
 {
 return "";
 }
 return ((AssemblyCompanyAttribute)attributes[0]).Company;
 }
 }
 #endregion

 private void okButton_Click(object sender, EventArgs e)
 {
 this.Close();
 }
 }
}

/*
 * File: AboutRegKeg.Designer.cs
 * Project: Master's Thesis

78

 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

namespace RegKeg
{
 partial class AboutRegKeg
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.IContainer components = null;

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if (disposing && (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 System.ComponentModel.ComponentResourceManager resources = new
System.ComponentModel.ComponentResourceManager(typeof(AboutRegKeg));
 this.tableLayoutPanel = new System.Windows.Forms.TableLayoutPanel();
 this.logoPictureBox = new System.Windows.Forms.PictureBox();
 this.labelProductName = new System.Windows.Forms.Label();
 this.labelVersion = new System.Windows.Forms.Label();
 this.labelCopyright = new System.Windows.Forms.Label();
 this.labelCompanyName = new System.Windows.Forms.Label();
 this.textBoxDescription = new System.Windows.Forms.TextBox();
 this.okButton = new System.Windows.Forms.Button();
 this.tableLayoutPanel.SuspendLayout();

((System.ComponentModel.ISupportInitialize)(this.logoPictureBox)).BeginInit();
 this.SuspendLayout();
 //
 // tableLayoutPanel
 //
 this.tableLayoutPanel.ColumnCount = 2;
 this.tableLayoutPanel.ColumnStyles.Add(new
System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 33F));
 this.tableLayoutPanel.ColumnStyles.Add(new
System.Windows.Forms.ColumnStyle(System.Windows.Forms.SizeType.Percent, 67F));
 this.tableLayoutPanel.Controls.Add(this.logoPictureBox, 0, 0);

79

 this.tableLayoutPanel.Controls.Add(this.labelProductName, 1, 0);
 this.tableLayoutPanel.Controls.Add(this.labelVersion, 1, 1);
 this.tableLayoutPanel.Controls.Add(this.labelCopyright, 1, 2);
 this.tableLayoutPanel.Controls.Add(this.labelCompanyName, 1, 3);
 this.tableLayoutPanel.Controls.Add(this.textBoxDescription, 1, 4);
 this.tableLayoutPanel.Controls.Add(this.okButton, 1, 5);
 this.tableLayoutPanel.Dock = System.Windows.Forms.DockStyle.Fill;
 this.tableLayoutPanel.Location = new System.Drawing.Point(9, 9);
 this.tableLayoutPanel.Name = "tableLayoutPanel";
 this.tableLayoutPanel.RowCount = 6;
 this.tableLayoutPanel.RowStyles.Add(new
System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 10F));
 this.tableLayoutPanel.RowStyles.Add(new
System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 10F));
 this.tableLayoutPanel.RowStyles.Add(new
System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 10F));
 this.tableLayoutPanel.RowStyles.Add(new
System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 10F));
 this.tableLayoutPanel.RowStyles.Add(new
System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 50F));
 this.tableLayoutPanel.RowStyles.Add(new
System.Windows.Forms.RowStyle(System.Windows.Forms.SizeType.Percent, 10F));
 this.tableLayoutPanel.Size = new System.Drawing.Size(417, 265);
 this.tableLayoutPanel.TabIndex = 0;
 //
 // logoPictureBox
 //
 this.logoPictureBox.Dock = System.Windows.Forms.DockStyle.Fill;
 this.logoPictureBox.Image =
((System.Drawing.Image)(resources.GetObject("logoPictureBox.Image")));
 this.logoPictureBox.Location = new System.Drawing.Point(3, 3);
 this.logoPictureBox.Name = "logoPictureBox";
 this.tableLayoutPanel.SetRowSpan(this.logoPictureBox, 6);
 this.logoPictureBox.Size = new System.Drawing.Size(131, 259);
 this.logoPictureBox.SizeMode =
System.Windows.Forms.PictureBoxSizeMode.StretchImage;
 this.logoPictureBox.TabIndex = 12;
 this.logoPictureBox.TabStop = false;
 //
 // labelProductName
 //
 this.labelProductName.Dock = System.Windows.Forms.DockStyle.Fill;
 this.labelProductName.Location = new System.Drawing.Point(143, 0);
 this.labelProductName.Margin = new System.Windows.Forms.Padding(6, 0, 3, 0);
 this.labelProductName.MaximumSize = new System.Drawing.Size(0, 17);
 this.labelProductName.Name = "labelProductName";
 this.labelProductName.Size = new System.Drawing.Size(271, 17);
 this.labelProductName.TabIndex = 19;
 this.labelProductName.Text = "Product Name: Reg Keg";
 this.labelProductName.TextAlign = System.Drawing.ContentAlignment.MiddleLeft;
 //
 // labelVersion
 //
 this.labelVersion.Dock = System.Windows.Forms.DockStyle.Fill;
 this.labelVersion.Location = new System.Drawing.Point(143, 26);
 this.labelVersion.Margin = new System.Windows.Forms.Padding(6, 0, 3, 0);
 this.labelVersion.MaximumSize = new System.Drawing.Size(0, 17);

80

 this.labelVersion.Name = "labelVersion";
 this.labelVersion.Size = new System.Drawing.Size(271, 17);
 this.labelVersion.TabIndex = 0;
 this.labelVersion.Text = "Version: 1.3.1";
 this.labelVersion.TextAlign = System.Drawing.ContentAlignment.MiddleLeft;
 //
 // labelCopyright
 //
 this.labelCopyright.Dock = System.Windows.Forms.DockStyle.Fill;
 this.labelCopyright.Location = new System.Drawing.Point(143, 52);
 this.labelCopyright.Margin = new System.Windows.Forms.Padding(6, 0, 3, 0);
 this.labelCopyright.MaximumSize = new System.Drawing.Size(0, 17);
 this.labelCopyright.Name = "labelCopyright";
 this.labelCopyright.Size = new System.Drawing.Size(271, 17);
 this.labelCopyright.TabIndex = 21;
 this.labelCopyright.Text = "Copyright: Bruno Nader";
 this.labelCopyright.TextAlign = System.Drawing.ContentAlignment.MiddleLeft;
 //
 // labelCompanyName
 //
 this.labelCompanyName.Dock = System.Windows.Forms.DockStyle.Fill;
 this.labelCompanyName.Location = new System.Drawing.Point(143, 78);
 this.labelCompanyName.Margin = new System.Windows.Forms.Padding(6, 0, 3, 0);
 this.labelCompanyName.MaximumSize = new System.Drawing.Size(0, 17);
 this.labelCompanyName.Name = "labelCompanyName";
 this.labelCompanyName.Size = new System.Drawing.Size(271, 17);
 this.labelCompanyName.TabIndex = 22;
 this.labelCompanyName.Text = "Southern Connecticut State University";
 this.labelCompanyName.TextAlign = System.Drawing.ContentAlignment.MiddleLeft;
 //
 // textBoxDescription
 //
 this.textBoxDescription.Dock = System.Windows.Forms.DockStyle.Fill;
 this.textBoxDescription.Location = new System.Drawing.Point(143, 107);
 this.textBoxDescription.Margin = new System.Windows.Forms.Padding(6, 3, 3,
3);
 this.textBoxDescription.Multiline = true;
 this.textBoxDescription.Name = "textBoxDescription";
 this.textBoxDescription.ReadOnly = true;
 this.textBoxDescription.ScrollBars = System.Windows.Forms.ScrollBars.Both;
 this.textBoxDescription.Size = new System.Drawing.Size(271, 126);
 this.textBoxDescription.TabIndex = 23;
 this.textBoxDescription.TabStop = false;
 this.textBoxDescription.Text = "A program that analysis the before and after
snapshot after running an uknown cod" +
 "e";
 //
 // okButton
 //
 this.okButton.Anchor =
((System.Windows.Forms.AnchorStyles)((System.Windows.Forms.AnchorStyles.Bottom |
System.Windows.Forms.AnchorStyles.Right)));
 this.okButton.DialogResult = System.Windows.Forms.DialogResult.Cancel;
 this.okButton.Location = new System.Drawing.Point(339, 239);
 this.okButton.Name = "okButton";
 this.okButton.Size = new System.Drawing.Size(75, 23);
 this.okButton.TabIndex = 24;

81

 this.okButton.Text = "&OK";
 this.okButton.Click += new System.EventHandler(this.okButton_Click);
 //
 // AboutRegKeg
 //
 this.AcceptButton = this.okButton;
 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(435, 283);
 this.Controls.Add(this.tableLayoutPanel);
 this.FormBorderStyle = System.Windows.Forms.FormBorderStyle.FixedDialog;
 this.MaximizeBox = false;
 this.MinimizeBox = false;
 this.Name = "AboutRegKeg";
 this.Padding = new System.Windows.Forms.Padding(9);
 this.ShowIcon = false;
 this.ShowInTaskbar = false;
 this.StartPosition = System.Windows.Forms.FormStartPosition.CenterParent;
 this.Text = "AboutRegKeg";
 this.tableLayoutPanel.ResumeLayout(false);
 this.tableLayoutPanel.PerformLayout();
 ((System.ComponentModel.ISupportInitialize)(this.logoPictureBox)).EndInit();
 this.ResumeLayout(false);

 }

 #endregion

 private System.Windows.Forms.TableLayoutPanel tableLayoutPanel;
 private System.Windows.Forms.PictureBox logoPictureBox;
 private System.Windows.Forms.Label labelProductName;
 private System.Windows.Forms.Label labelVersion;
 private System.Windows.Forms.Label labelCopyright;
 private System.Windows.Forms.Label labelCompanyName;
 private System.Windows.Forms.TextBox textBoxDescription;
 private System.Windows.Forms.Button okButton;
 }
}

/*
 * File: Action.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

namespace RegKeg
{
 public enum Action
 {
 Analyze,
 BuildFiles
 }
}

82

<?xml version="1.0"?>
<!--
 File: app.config
 Project: Master's Thesis
 Author: Bruno Nader
 Adviser: Dr. Hrvoje Podnar
 Date: May 20, 2014
-->
<configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>
 </startup>
 <appSettings>
 <add key="CleanKeyFilePath" value="Thesis\RegKeg\RegKeg\resources\clean_keys.txt"/>
 <add key="MalicousKeyFilePath"
value="Thesis\RegKeg\RegKeg\resources\suspicious_keys.txt"/>
 <add key="BeforeReg_AfterReg_exception_file"
value="Targetexception_TargetBeforeReg_LookupAfterReg.log"/>
 <add key="BeforeReg_AfterReg_keynotpresent_file"
value="keyNotPresent_TargetBeforeReg_LookupAfterReg.log"/>
 <add key="AfterReg_BeforeReg_exception_file"
value="exception_TargetAfterReg_LookupBeforeReg.log"/>
 <add key="AfterReg_BeforeReg_keynotpresent_file"
value="keyNotPresent_TargetAfterReg_LookupBeforeReg.log"/>
 <add key="BeforeDirectoryLastPath" value="Thesis\Before-After\Before\"/>
 <add key="AfterDirectoryLastPath" value="Thesis\Before-After\After\"/>
 </appSettings>
</configuration>

/*
 * File: CODE_CLASSIFICATION.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

namespace RegKeg
{
 public enum CODE_CLASSIFICATION
 {
 CLEAN,
 MALICIOUS,
 UNKNOWN
 }
}

/*
 * File: DataAnalyzer.cs
 * Project: Master's Thesis
 * Author: Bruno Nader

83

 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

namespace RegKeg
{
 public class DataAnalyzer
 {
 #region Private Fields

 private StatisticsData _statisticsData;
 private CODE_CLASSIFICATION _codeClassification;
 private float _classificationPercentage;

 #endregion

 #region Properties

 public StatisticsData StatisticsData
 {
 get { return this._statisticsData; }
 set { this._statisticsData = value; }
 }

 public CODE_CLASSIFICATION CodeClassification
 {
 get { return this._codeClassification; }
 set { this._codeClassification = value; }
 }

 public float ClassificationPercentage
 {
 get { return this._classificationPercentage; }
 set { this._classificationPercentage = value; }
 }

 #endregion

 #region Constructor(s)

 public DataAnalyzer(StatisticsData statisticsData)
 {
 this._classificationPercentage = 0;
 this._statisticsData = statisticsData;
 this._codeClassification = DetermineCodeClassification();
 }

 #endregion

 #region Private Method(s)

 private CODE_CLASSIFICATION DetermineCodeClassification()
 {
 if (this._statisticsData.Average > 0.02)
 {
 if (this._statisticsData.StandardDeviation > 3.6)
 {

84

 this._classificationPercentage = 100.0f;
 return CODE_CLASSIFICATION.MALICIOUS;
 }
 else
 {
 this._classificationPercentage = 75;
 return CODE_CLASSIFICATION.MALICIOUS;
 }
 }

 if (this._statisticsData.Average < 0.02)
 {
 if(this._statisticsData.StandardDeviation < 3.6)
 {
 this._classificationPercentage = 100.0f;
 return CODE_CLASSIFICATION.CLEAN;
 }
 else
 {
 this._classificationPercentage = 75;
 return CODE_CLASSIFICATION.CLEAN;
 }
 }

 this._classificationPercentage = 0;
 return CODE_CLASSIFICATION.UNKNOWN;
 }

 #endregion
 }
}

/*
 * File: DriveLetter.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System.IO;

namespace RegKeg
{
 public static class DriveLetter
 {
 #region Properties

 public static string Name
 {
 get;
 set;
 }

 #endregion

85

 #region Constructor

 static DriveLetter()
 {
 string fullPath = System.Reflection.Assembly.GetExecutingAssembly().Location;
 FileInfo f = new FileInfo(fullPath);
 Name = Path.GetPathRoot(f.FullName);
 }

 #endregion
 }
}

/*
 * File: FileStatus.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

namespace RegKeg
{
 public enum FileStatus
 {
 Before,
 After
 }
}

/*
 * File: FileSystemComparer.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System;
using System.Collections.Generic;
using System.IO;
using System.Text.RegularExpressions;

namespace RegKeg
{
 public class FileSystemComparer
 {
 public List<string> _beforeList { get; set; }
 public List<string> _afterList { get; set; }
 public string _path { get; set; }
 public List<string> _fileSystem { get; set; }
 public int _score { get; set; }

86

 public FileSystemComparer(List<string> beforeList, List<string> afterList, string
path)
 {
 this._beforeList = beforeList;
 this._afterList = afterList;
 this._path = Path.GetDirectoryName(path);
 GetFileSystemList();
 this._score = 0;
 }

 private void GetFileSystemList()
 {
 this._fileSystem = new List<string>();
 this._fileSystem.Add(@"C:\\Program Files\\");
 this._fileSystem.Add(@"C:\\Windows\\");
 //this._fileSystem.Add(@"C:\\Documents and Settings\\Bruno\\Application
Data\\");
 }

 public void Compare()
 {
 using (StreamWriter notPresentWriter = new StreamWriter(this._path + "\\" +
"file_system_comparer.txt",false))
 {
 List<string> notPresentFilesList = new List<string>();

 notPresentWriter.WriteLine("Files that are NOT found on the Before Data
Set System Files.");

notPresentWriter.WriteLine("===
==");
 foreach (string file in this._afterList)
 {
 if (!this._beforeList.Contains(file))
 {
 notPresentFilesList.Add(file);
 notPresentWriter.WriteLine(file);
 }
 }

 foreach (string file in notPresentFilesList)
 {
 try
 {
 if (IsWindowsDirectoryEntry(file))
 {
 this._score += 5;
 }
 else if (IsProgramFilesDirectoryEntry(file))
 {
 this._score += 1;
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception in Compare(): " + e.Message);

87

 }
 }
 }
 }

 private bool IsProgramFilesDirectoryEntry(string file)
 {
 if (Regex.IsMatch(file, this._fileSystem[0]))
 return true;

 return false;
 }

 private bool IsWindowsDirectoryEntry(string file)
 {
 if (Regex.IsMatch(file, this._fileSystem[1]))
 return true;

 return false;
 }
 }
}

/*
 * File: FileSystemReader.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System;
using System.Collections.Generic;
using System.IO;

namespace RegKeg
{
 public class FileSystemReader
 {
 #region Properties

 public string FileName { get; set; }
 public List<string> FilesList { get; set; }

 #endregion

 public FileSystemReader(string fileName)
 {
 this.FileName = fileName;
 this.ReadFile();
 }

 private void ReadFile()
 {
 this.FilesList = new List<string>();

88

 try
 {
 using (StreamReader streamReader = new StreamReader(this.FileName))
 {
 string line = "";
 while ((line = streamReader.ReadLine()) != null)
 {
 FilesList.Add(line);
 }
 }
 }
 catch (Exception exception)
 {
 Console.WriteLine("Exception: " + exception.Message);
 }
 }
 }
}

/*
 * File: Form.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System;
using System.Collections.Generic;
using System.Configuration;
using System.Diagnostics;
using System.IO;
using System.Windows.Forms;

namespace RegKeg
{
 public partial class Form1 : Form
 {
 private RegistryComparer registryComparer = null;
 private Stopwatch stopwatch;
 private Action action;

 private const string REGISTRY_FILE_FILTER = "Registry File|*.reg";
 private const string TEXT_FILE_FILTER = "Text File|*.txt";

 public delegate void poplateTextBoxDelegate(string text);
 public delegate void analysisDelegate();
 public delegate void updateProgressBar();

 public delegate void updateCompareBar();

 public Form1()
 {
 InitializeComponent();
#if DEBUG

89

 //LoadDefaultParameters();
#endif

 }

 private void LoadDefaultParameters()
 {
 txtBeforeFilePath.Text = @"H:\Thesis\Before-After\Before\10-17-2012_001\";
 txtAfterFilePath.Text = @"H:\Thesis\Before-After\After\";
 txtMasterSuspiciousKeyFiles.Text = @"H:\Thesis\Before-
After\Analysis\master_suspicious_keys.txt";
 txtScoringFile.Text = @"H:\Thesis\Before-After\Analysis\scoring_keys.txt";
 txtOutputFilePath.Text = @"H:\Thesis\Before-After\After\";
 }

 void populateTextBox(string text)
 {
 txtStatus.Text = text;
 }

 private void btnStartAnalysis_Click(object sender, EventArgs e)
 {
 action = Action.Analyze;
 StartClockAndAnalysis();
 }

 private void StartClockAndAnalysis()
 {
 stopwatch = Stopwatch.StartNew();

 analysisDelegate analysis_delegate = StartRegistryAnalysis;
 analysis_delegate.BeginInvoke(null, null);
 }

 private void StartRegistryAnalysis()
 {
 if (action == Action.Analyze)
 {
 if (!ValidInputParameters())
 return;
 }

 string outputPath = GetOutputPath();

 this.Invoke(new updateProgressBar(updateProgress));

 this.Invoke(new poplateTextBoxDelegate(populateTextBox), new object[]
{"Reading Before Files..." });

 string[] regFiles = Directory.GetFiles(txtBeforeFilePath.Text,"*.reg");
 string[] fileSystem = Directory.GetFiles(txtBeforeFilePath.Text, "*.txt");

 if (regFiles.Length == 0)
 {
 MessageBox.Show("There are no Registry files in the Before directory,
please double check it and try again.");
 return;

90

 }

 RegistryReader beforeRegistryReader = new RegistryReader(regFiles[0]);

 this.Invoke(new poplateTextBoxDelegate(populateTextBox), new object[] {
"Creating Before Dictionary..." });
 Dictionary<string, string> beforeDic =
beforeRegistryReader.RegistryDictionary;

 FileSystemReader beforeFileSystemReader = new
FileSystemReader(fileSystem[0]);

 this.Invoke(new poplateTextBoxDelegate(populateTextBox), new object[] {
"Reading After Files..." });

 try
 {
 string[] afterRegFiles = Directory.GetFiles(txtAfterFilePath.Text,
"*.reg");
 string[] afterFileSystem = Directory.GetFiles(txtAfterFilePath.Text,
"*.txt");

 if (afterRegFiles.Length == 0)
 {
 MessageBox.Show("There are no Registry files in the After directory,
please double check it and try again.");
 return;
 }
 RegistryReader afterRegistryReader = new
RegistryReader(afterRegFiles[0]);

 this.Invoke(new poplateTextBoxDelegate(populateTextBox), new object[] {
"Creating After Dictionary..." });
 Dictionary<string, string> afterDic =
afterRegistryReader.RegistryDictionary;
 FileSystemReader afterFileSystemReader = new
FileSystemReader(afterFileSystem[0]);

 Dictionary<string, FrequencyScore> frequencyScoreDictionary = null;

 if (!trainingToolStripMenuItem.Checked)
 {
 this.Invoke(new poplateTextBoxDelegate(populateTextBox), new object[]
{ "Creating Scoring Dictionary..." });
 //scoring file path here
 ScoringFileReader scoringFileReader = new
ScoringFileReader(txtScoringFile.Text);
 frequencyScoreDictionary = scoringFileReader.GetScoringDictionary();
 }

 this.Invoke(new poplateTextBoxDelegate(populateTextBox), new object[] {
"Start Comparing Dictionaries..." });
 registryComparer = new RegistryComparer(beforeDic, afterDic, outputPath,
frequencyScoreDictionary);

91

 registryComparer.PerformComparison();

 FileSystemComparer fileSystemComparer = new
FileSystemComparer(beforeFileSystemReader.FilesList, afterFileSystemReader.FilesList,
outputPath);
 fileSystemComparer.Compare();

 this.Invoke(new updateCompareBar(updateCompareBarMethod));
 this.Invoke(new poplateTextBoxDelegate(populateTextBox), new object[] {
"Finished..." });

 WriteResultsData(outputPath);
 MessageBox.Show("Finished!!\nElapsed Comparison Time: " +
 stopwatch.Elapsed + " seconds" +
System.Environment.NewLine +
 "Mismatch Count: " + registryComparer.MismatchCount +
System.Environment.NewLine +
 "Score: " + registryComparer.Score +
fileSystemComparer._score,
 "Registry Comparison",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 OpenOutputFile(outputPath);
 }
 catch (DirectoryNotFoundException dnf)
 {
 MessageBox.Show("Directory not found. " + dnf.Message);
 return;
 }
 }

 private string GetOutputPath()
 {
 string outputPath = "";

 if (txtOutputFilePath.Text == "")
 {
 outputPath = txtAfterFilePath.Text + @"\Analysis\";
 }
 else
 {
 outputPath = txtOutputFilePath.Text + @"\Analysis\";
 }

 return outputPath;
 }

 private bool ValidInputParameters()
 {
 bool isValid = true;

 //path for before dataset
 if (txtBeforeFilePath.Text == "") {
 MessageBox.Show("Please choose directory path for the before data
points", "Missing Directory Path", MessageBoxButtons.OK);
 isValid = false;

92

 }

 //path for after dataset
 if (txtAfterFilePath.Text == "") {
 MessageBox.Show("Please choose directory path for the after data points",
"Missing Directory Path", MessageBoxButtons.OK);
 isValid = false;
 }

 if (txtOutputFilePath.Text == "") {
 MessageBox.Show("Please choose directory path for outputting the report
files", "Missing Directory Path", MessageBoxButtons.OK);
 isValid = false;
 }

 if (!trainingToolStripMenuItem.Checked)
 {
 //path for master suspicious key file
 if (txtMasterSuspiciousKeyFiles.Text == "")
 {
 MessageBox.Show("Please choose directory path for the Master
Suspicious Key file", "Missing Directory Path", MessageBoxButtons.OK);
 isValid = false;
 }

 //path for scoring file
 if (txtScoringFile.Text == "")
 {
 MessageBox.Show("Please choose directory path for the Scoring Key
file", "Missing Directory Path", MessageBoxButtons.OK);
 isValid = false;
 }
 }

 return isValid;
 }

 private void WriteResultsData(string path)
 {
 try
 {
 using (StreamWriter writer = new StreamWriter(path + @"\Results.txt"))
 {
 writer.WriteLine(stopwatch.Elapsed + " seconds" +
System.Environment.NewLine +
 "Mismatch Count: " + registryComparer.MismatchCount +
System.Environment.NewLine +
 "Score: " + registryComparer.Score);
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception writing results data file: " + e.Message);
 }
 }

 private void OpenOutputFile(string path)

93

 {
 Process.Start(path);
 }

 private void updateProgress()
 {
 this.progressBar1.Style = ProgressBarStyle.Marquee;
 }

 private void updateCompareBarMethod()
 {
 this.progressBar1.Maximum = 100;
 this.progressBar1.Style = ProgressBarStyle.Blocks;
 this.progressBar1.Value = 100;
 }

 private void btnBrowseBeforeFile_Click(object sender, EventArgs e)
 {
 string path = ConfigurationManager.AppSettings["BeforeDirectoryLastPath"];
 txtBeforeFilePath.Text = GetFolderPath(path);
 }

 private static void SetFilePathTextBoxProperties(TextBox textBox)
 {
 textBox.ReadOnly = true;
 }

 private static string GetFilePath(FileDialog fileDialog)
 {
 DialogResult dialogResult = fileDialog.ShowDialog();
 return fileDialog.FileName;
 }

 private static void SetFileFilter(FileDialog fileDialog, string fileFilter)
 {
 fileDialog.Filter = fileFilter;
 fileDialog.AddExtension = true;
 }

 private void btnBrowseAfterFile_Click(object sender, EventArgs e)
 {
 txtAfterFilePath.Text = BrowseToDirectory("AfterDirectoryLastPath");
 }

 private static string GetFolderPath(string path)
 {
 string folderPath = "";
 FolderBrowserDialog folderBrowserDialog1 = new FolderBrowserDialog();
 folderBrowserDialog1.SelectedPath = DriveLetter.Name + path;

 if (folderBrowserDialog1.ShowDialog() == DialogResult.OK)
 {
 folderPath = folderBrowserDialog1.SelectedPath;
 }

 return folderPath;
 }

94

 private void btnBrowseOutputFile_Click(object sender, EventArgs e)
 {
 txtOutputFilePath.Text = BrowseToDirectory("AfterDirectoryLastPath");
 }

 private void startRegistryToolStripMenuItem_Click(object sender, EventArgs e)
 {
 StartClockAndAnalysis();
 }

 private void exitToolStripMenuItem_Click(object sender, EventArgs e)
 {
 this.Close();
 }

 private string BrowseToDirectory(string path)
 {
 return GetFolderPath(ConfigurationManager.AppSettings[path]);
 }

 private void browseBeforeDirectoryToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 txtBeforeFilePath.Text = BrowseToDirectory("BeforeDirectoryLastPath");
 }

 private void browseAfterDirectoryToolStripMenuItem_Click(object sender, EventArgs
e)
 {
 txtAfterFilePath.Text = BrowseToDirectory("AfterDirectoryLastPath");
 }

 private void toolStripMenuItem1_Click(object sender, EventArgs e)
 {
 if (txtOutputFilePath.Text == "")
 {
 MessageBox.Show("Please select a parent path of where to look for the
'nonPresentKey.txt' file");
 txtOutputFilePath.Focus();
 return;
 }
 else
 {
 new ListBuilder(txtOutputFilePath.Text);

 MessageBox.Show("All Done building the suspicous dataset list");
 }

 }

 private void button2_Click(object sender, EventArgs e)
 {
 OpenFileDialog fdlg = new OpenFileDialog();

 fdlg.Title = "Browse for Master File";
 fdlg.InitialDirectory = DriveLetter.Name + @"Thesis\Before-After\Analysis\";

95

 fdlg.Filter = "All files (*.*)|*.*|Text files (*.txt)|*.txt";
 fdlg.FilterIndex = 2;
 fdlg.RestoreDirectory = true;

 if (fdlg.ShowDialog() == DialogResult.OK)
 {
 txtMasterSuspiciousKeyFiles.Text = fdlg.FileName;
 }
 }

 private void Form1_Load(object sender, EventArgs e)
 {

 }

 private void btnBrowseScoringFile_Click(object sender, EventArgs e)
 {
 OpenFileDialog fdlg = new OpenFileDialog();

 fdlg.Title = "Browse for Scoring File";
 fdlg.InitialDirectory = DriveLetter.Name + @"Thesis\Before-After\Analysis\";
 fdlg.Filter = "All files (*.*)|*.*|Text files (*.txt)|*.txt";
 fdlg.FilterIndex = 2;
 fdlg.RestoreDirectory = true;

 if (fdlg.ShowDialog() == DialogResult.OK)
 {
 txtScoringFile.Text = fdlg.FileName;
 }
 }

 private void btnGetBeforeRegKeyData_Click(object sender, EventArgs e)
 {
 RegKeyGrabber regKeyGrabber = new RegKeyGrabber(SNAPSHOT_STATUS.BEFORE);
 }

 private void btnGetAfterRegKeyData_Click_1(object sender, EventArgs e)
 {
 RegKeyGrabber regKeyGrabber = new RegKeyGrabber(SNAPSHOT_STATUS.AFTER);
 }

 private void aboutToolStripMenuItem_Click(object sender, EventArgs e)
 {
 AboutRegKeg about = new AboutRegKeg();
 about.Show();
 }

 private void getGeneralStatisticsToolStripMenuItem_Click(object sender, EventArgs
e)
 {
 if (txtOutputFilePath.Text == "")
 {
 MessageBox.Show("Please select a parent path of where to look for the
'statistics.txt' file");
 txtOutputFilePath.Focus();
 return;
 }

96

 else
 {
 new StatisticsBuilder(txtOutputFilePath.Text);
 MessageBox.Show("All Done!!");
 }
 }

 private void mnuDetermineCode_Click(object sender, EventArgs e)
 {
 if (txtOutputFilePath.Text == "")
 {
 MessageBox.Show("Please select the directory to look for the
'statistics.txt' file");
 txtOutputFilePath.Focus();
 return;
 }
 else
 {
 StatisticsReader reader = new StatisticsReader(txtOutputFilePath.Text);
 StatisticsData statisticsData = reader.Read();
 DataAnalyzer analyzer = new DataAnalyzer(statisticsData);

 using (StreamWriter analyzerWriter = new
StreamWriter(txtOutputFilePath.Text + "\\code_classification.txt",false))
 {
 analyzerWriter.WriteLine("code_classification: " +
analyzer.CodeClassification.ToString());
 analyzerWriter.WriteLine("classification_percentage: " +
analyzer.ClassificationPercentage.ToString());
 }

 switch (analyzer.CodeClassification)
 {
 case CODE_CLASSIFICATION.CLEAN:
 MessageBox.Show("This is a clean code!!" + Environment.NewLine +
"Percentage: " + analyzer.ClassificationPercentage);
 break;

 case CODE_CLASSIFICATION.MALICIOUS:
 MessageBox.Show("This is a malicious code!!" +
Environment.NewLine + "Percentage: " + analyzer.ClassificationPercentage);
 break;

 case CODE_CLASSIFICATION.UNKNOWN:
 MessageBox.Show("This is an unknown code!!" + Environment.NewLine
+ "Percentage: " + analyzer.ClassificationPercentage);
 break;

 default:
 MessageBox.Show("Not sure what code is this!!" +
Environment.NewLine + "Percentage: " + analyzer.ClassificationPercentage);
 break;
 }
 }
 }

97

 private void buildNonPresentFilesToolStripMenuItem_Click(object sender, EventArgs
e)
 {

 }

 private void trainingToolStripMenuItem_Click(object sender, EventArgs e)
 {
 trainingToolStripMenuItem.Checked = true;
 experimentalToolStripMenuItem.Checked = false;
 }

 private void experimentalToolStripMenuItem_Click(object sender, EventArgs e)
 {
 trainingToolStripMenuItem.Checked = false;
 experimentalToolStripMenuItem.Checked = true;
 }
 }
}

/*
 * File: Form1.Designer.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

namespace RegKeg
{
 partial class Form1
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.IContainer components = null;

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 /// <param name="disposing">true if managed resources should be disposed;
otherwise, false.</param>
 protected override void Dispose(bool disposing)
 {
 if (disposing && (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code

 /// <summary>
 /// Required method for Designer support - do not modify

98

 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.groupBox1 = new System.Windows.Forms.GroupBox();
 this.btnBrowseBeforeFile = new System.Windows.Forms.Button();
 this.txtBeforeFilePath = new System.Windows.Forms.TextBox();
 this.ofdBefore = new System.Windows.Forms.OpenFileDialog();
 this.ofdAfter = new System.Windows.Forms.OpenFileDialog();
 this.groupBox2 = new System.Windows.Forms.GroupBox();
 this.btnBrowseAfterFile = new System.Windows.Forms.Button();
 this.txtAfterFilePath = new System.Windows.Forms.TextBox();
 this.groupBox3 = new System.Windows.Forms.GroupBox();
 this.btnBrowseOutputFile = new System.Windows.Forms.Button();
 this.txtOutputFilePath = new System.Windows.Forms.TextBox();
 this.sfdOutputFile = new System.Windows.Forms.SaveFileDialog();
 this.btnStartAnalysis = new System.Windows.Forms.Button();
 this.progressBar1 = new System.Windows.Forms.ProgressBar();
 this.txtStatus = new System.Windows.Forms.TextBox();
 this.menuStrip1 = new System.Windows.Forms.MenuStrip();
 this.fileToolStripMenuItem = new System.Windows.Forms.ToolStripMenuItem();
 this.browseBeforeDirectoryToolStripMenuItem = new
System.Windows.Forms.ToolStripMenuItem();
 this.browseAfterDirectoryToolStripMenuItem = new
System.Windows.Forms.ToolStripMenuItem();
 this.startRegistryToolStripMenuItem = new
System.Windows.Forms.ToolStripMenuItem();
 this.toolStripMenuItem1 = new System.Windows.Forms.ToolStripMenuItem();
 this.buildNonPresentFilesToolStripMenuItem = new
System.Windows.Forms.ToolStripMenuItem();
 this.getGeneralStatisticsToolStripMenuItem = new
System.Windows.Forms.ToolStripMenuItem();
 this.mnuDetermineCode = new System.Windows.Forms.ToolStripMenuItem();
 this.exitToolStripMenuItem = new System.Windows.Forms.ToolStripMenuItem();
 this.helpToolStripMenuItem = new System.Windows.Forms.ToolStripMenuItem();
 this.aboutToolStripMenuItem = new System.Windows.Forms.ToolStripMenuItem();
 this.groupBox4 = new System.Windows.Forms.GroupBox();
 this.btnBrowseMasterFile = new System.Windows.Forms.Button();
 this.txtMasterSuspiciousKeyFiles = new System.Windows.Forms.TextBox();
 this.groupBox5 = new System.Windows.Forms.GroupBox();
 this.btnBrowseScoringFile = new System.Windows.Forms.Button();
 this.txtScoringFile = new System.Windows.Forms.TextBox();
 this.btnGetBeforeRegKeyData = new System.Windows.Forms.Button();
 this.btnGetAfterRegKeyData = new System.Windows.Forms.Button();
 this.modeToolStripMenuItem = new System.Windows.Forms.ToolStripMenuItem();
 this.trainingToolStripMenuItem = new
System.Windows.Forms.ToolStripMenuItem();
 this.experimentalToolStripMenuItem = new
System.Windows.Forms.ToolStripMenuItem();
 this.groupBox1.SuspendLayout();
 this.groupBox2.SuspendLayout();
 this.groupBox3.SuspendLayout();
 this.menuStrip1.SuspendLayout();
 this.groupBox4.SuspendLayout();
 this.groupBox5.SuspendLayout();
 this.SuspendLayout();
 //

99

 // groupBox1
 //
 this.groupBox1.Controls.Add(this.btnBrowseBeforeFile);
 this.groupBox1.Controls.Add(this.txtBeforeFilePath);
 this.groupBox1.Location = new System.Drawing.Point(13, 43);
 this.groupBox1.Name = "groupBox1";
 this.groupBox1.Size = new System.Drawing.Size(494, 53);
 this.groupBox1.TabIndex = 0;
 this.groupBox1.TabStop = false;
 this.groupBox1.Text = "Path for Before Data Files";
 //
 // btnBrowseBeforeFile
 //
 this.btnBrowseBeforeFile.Location = new System.Drawing.Point(386, 18);
 this.btnBrowseBeforeFile.Name = "btnBrowseBeforeFile";
 this.btnBrowseBeforeFile.Size = new System.Drawing.Size(102, 23);
 this.btnBrowseBeforeFile.TabIndex = 1;
 this.btnBrowseBeforeFile.Text = "Browse";
 this.btnBrowseBeforeFile.UseVisualStyleBackColor = true;
 this.btnBrowseBeforeFile.Click += new
System.EventHandler(this.btnBrowseBeforeFile_Click);
 //
 // txtBeforeFilePath
 //
 this.txtBeforeFilePath.Location = new System.Drawing.Point(7, 20);
 this.txtBeforeFilePath.Name = "txtBeforeFilePath";
 this.txtBeforeFilePath.Size = new System.Drawing.Size(372, 20);
 this.txtBeforeFilePath.TabIndex = 0;
 //
 // ofdBefore
 //
 this.ofdBefore.FileName = "openFileDialog1";
 //
 // ofdAfter
 //
 this.ofdAfter.FileName = "openFileDialog1";
 //
 // groupBox2
 //
 this.groupBox2.Controls.Add(this.btnBrowseAfterFile);
 this.groupBox2.Controls.Add(this.txtAfterFilePath);
 this.groupBox2.Location = new System.Drawing.Point(12, 107);
 this.groupBox2.Name = "groupBox2";
 this.groupBox2.Size = new System.Drawing.Size(494, 53);
 this.groupBox2.TabIndex = 1;
 this.groupBox2.TabStop = false;
 this.groupBox2.Text = "Path for After Data Files";
 //
 // btnBrowseAfterFile
 //
 this.btnBrowseAfterFile.Location = new System.Drawing.Point(386, 18);
 this.btnBrowseAfterFile.Name = "btnBrowseAfterFile";
 this.btnBrowseAfterFile.Size = new System.Drawing.Size(102, 23);
 this.btnBrowseAfterFile.TabIndex = 1;
 this.btnBrowseAfterFile.Text = "Browse";
 this.btnBrowseAfterFile.UseVisualStyleBackColor = true;

100

 this.btnBrowseAfterFile.Click += new
System.EventHandler(this.btnBrowseAfterFile_Click);
 //
 // txtAfterFilePath
 //
 this.txtAfterFilePath.Location = new System.Drawing.Point(7, 20);
 this.txtAfterFilePath.Name = "txtAfterFilePath";
 this.txtAfterFilePath.Size = new System.Drawing.Size(372, 20);
 this.txtAfterFilePath.TabIndex = 0;
 //
 // groupBox3
 //
 this.groupBox3.Controls.Add(this.btnBrowseOutputFile);
 this.groupBox3.Controls.Add(this.txtOutputFilePath);
 this.groupBox3.Location = new System.Drawing.Point(12, 166);
 this.groupBox3.Name = "groupBox3";
 this.groupBox3.Size = new System.Drawing.Size(494, 53);
 this.groupBox3.TabIndex = 2;
 this.groupBox3.TabStop = false;
 this.groupBox3.Text = "Path for Outputting Report Files / Non Present Key
Parent Directory";
 //
 // btnBrowseOutputFile
 //
 this.btnBrowseOutputFile.Location = new System.Drawing.Point(386, 18);
 this.btnBrowseOutputFile.Name = "btnBrowseOutputFile";
 this.btnBrowseOutputFile.Size = new System.Drawing.Size(102, 23);
 this.btnBrowseOutputFile.TabIndex = 1;
 this.btnBrowseOutputFile.Text = "Browse";
 this.btnBrowseOutputFile.UseVisualStyleBackColor = true;
 this.btnBrowseOutputFile.Click += new
System.EventHandler(this.btnBrowseOutputFile_Click);
 //
 // txtOutputFilePath
 //
 this.txtOutputFilePath.Location = new System.Drawing.Point(7, 20);
 this.txtOutputFilePath.Name = "txtOutputFilePath";
 this.txtOutputFilePath.Size = new System.Drawing.Size(372, 20);
 this.txtOutputFilePath.TabIndex = 0;
 //
 // btnStartAnalysis
 //
 this.btnStartAnalysis.Location = new System.Drawing.Point(12, 410);
 this.btnStartAnalysis.Name = "btnStartAnalysis";
 this.btnStartAnalysis.Size = new System.Drawing.Size(495, 37);
 this.btnStartAnalysis.TabIndex = 3;
 this.btnStartAnalysis.Text = "Start Dataset Analysis and Reporting";
 this.btnStartAnalysis.UseVisualStyleBackColor = true;
 this.btnStartAnalysis.Click += new
System.EventHandler(this.btnStartAnalysis_Click);
 //
 // progressBar1
 //
 this.progressBar1.Location = new System.Drawing.Point(13, 351);
 this.progressBar1.Name = "progressBar1";
 this.progressBar1.Size = new System.Drawing.Size(494, 23);
 this.progressBar1.TabIndex = 4;

101

 //
 // txtStatus
 //
 this.txtStatus.Location = new System.Drawing.Point(13, 383);
 this.txtStatus.Name = "txtStatus";
 this.txtStatus.Size = new System.Drawing.Size(494, 20);
 this.txtStatus.TabIndex = 5;
 //
 // menuStrip1
 //
 this.menuStrip1.Items.AddRange(new System.Windows.Forms.ToolStripItem[] {
 this.fileToolStripMenuItem,
 this.helpToolStripMenuItem});
 this.menuStrip1.Location = new System.Drawing.Point(0, 0);
 this.menuStrip1.Name = "menuStrip1";
 this.menuStrip1.Size = new System.Drawing.Size(517, 24);
 this.menuStrip1.TabIndex = 6;
 this.menuStrip1.Text = "menuStrip1";
 //
 // fileToolStripMenuItem
 //
 this.fileToolStripMenuItem.DropDownItems.AddRange(new
System.Windows.Forms.ToolStripItem[] {
 this.browseBeforeDirectoryToolStripMenuItem,
 this.browseAfterDirectoryToolStripMenuItem,
 this.startRegistryToolStripMenuItem,
 this.toolStripMenuItem1,
 this.buildNonPresentFilesToolStripMenuItem,
 this.getGeneralStatisticsToolStripMenuItem,
 this.mnuDetermineCode,
 this.modeToolStripMenuItem,
 this.exitToolStripMenuItem});
 this.fileToolStripMenuItem.Name = "fileToolStripMenuItem";
 this.fileToolStripMenuItem.Size = new System.Drawing.Size(37, 20);
 this.fileToolStripMenuItem.Text = "File";
 //
 // browseBeforeDirectoryToolStripMenuItem
 //
 this.browseBeforeDirectoryToolStripMenuItem.Name =
"browseBeforeDirectoryToolStripMenuItem";
 this.browseBeforeDirectoryToolStripMenuItem.Size = new
System.Drawing.Size(256, 22);
 this.browseBeforeDirectoryToolStripMenuItem.Text = "Browse for the Before
Directory";
 this.browseBeforeDirectoryToolStripMenuItem.Click += new
System.EventHandler(this.browseBeforeDirectoryToolStripMenuItem_Click);
 //
 // browseAfterDirectoryToolStripMenuItem
 //
 this.browseAfterDirectoryToolStripMenuItem.Name =
"browseAfterDirectoryToolStripMenuItem";
 this.browseAfterDirectoryToolStripMenuItem.Size = new
System.Drawing.Size(256, 22);
 this.browseAfterDirectoryToolStripMenuItem.Text = "Browse for the After
Directory";
 this.browseAfterDirectoryToolStripMenuItem.Click += new
System.EventHandler(this.browseAfterDirectoryToolStripMenuItem_Click);

102

 //
 // startRegistryToolStripMenuItem
 //
 this.startRegistryToolStripMenuItem.Name = "startRegistryToolStripMenuItem";
 this.startRegistryToolStripMenuItem.Size = new System.Drawing.Size(256, 22);
 this.startRegistryToolStripMenuItem.Text = "Start Registry File Analysis";
 this.startRegistryToolStripMenuItem.Click += new
System.EventHandler(this.startRegistryToolStripMenuItem_Click);
 //
 // toolStripMenuItem1
 //
 this.toolStripMenuItem1.Name = "toolStripMenuItem1";
 this.toolStripMenuItem1.Size = new System.Drawing.Size(256, 22);
 this.toolStripMenuItem1.Text = "Build Suspicious Dataset List";
 this.toolStripMenuItem1.Click += new
System.EventHandler(this.toolStripMenuItem1_Click);
 //
 // buildNonPresentFilesToolStripMenuItem
 //
 this.buildNonPresentFilesToolStripMenuItem.Name =
"buildNonPresentFilesToolStripMenuItem";
 this.buildNonPresentFilesToolStripMenuItem.Size = new
System.Drawing.Size(256, 22);
 this.buildNonPresentFilesToolStripMenuItem.Text = "Build Non Present Files";
 this.buildNonPresentFilesToolStripMenuItem.Click += new
System.EventHandler(this.buildNonPresentFilesToolStripMenuItem_Click);
 //
 // getGeneralStatisticsToolStripMenuItem
 //
 this.getGeneralStatisticsToolStripMenuItem.Name =
"getGeneralStatisticsToolStripMenuItem";
 this.getGeneralStatisticsToolStripMenuItem.Size = new
System.Drawing.Size(256, 22);
 this.getGeneralStatisticsToolStripMenuItem.Text = "Build General Statistics
Data Points";
 this.getGeneralStatisticsToolStripMenuItem.Click += new
System.EventHandler(this.getGeneralStatisticsToolStripMenuItem_Click);
 //
 // mnuDetermineCode
 //
 this.mnuDetermineCode.Name = "mnuDetermineCode";
 this.mnuDetermineCode.Size = new System.Drawing.Size(256, 22);
 this.mnuDetermineCode.Text = "Classify Unknown Binary Code";
 this.mnuDetermineCode.Click += new
System.EventHandler(this.mnuDetermineCode_Click);
 //
 // exitToolStripMenuItem
 //
 this.exitToolStripMenuItem.Name = "exitToolStripMenuItem";
 this.exitToolStripMenuItem.Size = new System.Drawing.Size(256, 22);
 this.exitToolStripMenuItem.Text = "Exit";
 this.exitToolStripMenuItem.Click += new
System.EventHandler(this.exitToolStripMenuItem_Click);
 //
 // helpToolStripMenuItem
 //

103

 this.helpToolStripMenuItem.DropDownItems.AddRange(new
System.Windows.Forms.ToolStripItem[] {
 this.aboutToolStripMenuItem});
 this.helpToolStripMenuItem.Name = "helpToolStripMenuItem";
 this.helpToolStripMenuItem.Size = new System.Drawing.Size(44, 20);
 this.helpToolStripMenuItem.Text = "Help";
 //
 // aboutToolStripMenuItem
 //
 this.aboutToolStripMenuItem.Name = "aboutToolStripMenuItem";
 this.aboutToolStripMenuItem.Size = new System.Drawing.Size(153, 22);
 this.aboutToolStripMenuItem.Text = "About Reg Keg";
 this.aboutToolStripMenuItem.Click += new
System.EventHandler(this.aboutToolStripMenuItem_Click);
 //
 // groupBox4
 //
 this.groupBox4.Controls.Add(this.btnBrowseMasterFile);
 this.groupBox4.Controls.Add(this.txtMasterSuspiciousKeyFiles);
 this.groupBox4.Location = new System.Drawing.Point(12, 225);
 this.groupBox4.Name = "groupBox4";
 this.groupBox4.Size = new System.Drawing.Size(494, 53);
 this.groupBox4.TabIndex = 2;
 this.groupBox4.TabStop = false;
 this.groupBox4.Text = "Path for Master Suspicious Key File";
 //
 // btnBrowseMasterFile
 //
 this.btnBrowseMasterFile.Location = new System.Drawing.Point(386, 18);
 this.btnBrowseMasterFile.Name = "btnBrowseMasterFile";
 this.btnBrowseMasterFile.Size = new System.Drawing.Size(102, 23);
 this.btnBrowseMasterFile.TabIndex = 1;
 this.btnBrowseMasterFile.Text = "Browse";
 this.btnBrowseMasterFile.UseVisualStyleBackColor = true;
 this.btnBrowseMasterFile.Click += new
System.EventHandler(this.button2_Click);
 //
 // txtMasterSuspiciousKeyFiles
 //
 this.txtMasterSuspiciousKeyFiles.Location = new System.Drawing.Point(7, 20);
 this.txtMasterSuspiciousKeyFiles.Name = "txtMasterSuspiciousKeyFiles";
 this.txtMasterSuspiciousKeyFiles.Size = new System.Drawing.Size(372, 20);
 this.txtMasterSuspiciousKeyFiles.TabIndex = 0;
 //
 // groupBox5
 //
 this.groupBox5.Controls.Add(this.btnBrowseScoringFile);
 this.groupBox5.Controls.Add(this.txtScoringFile);
 this.groupBox5.Location = new System.Drawing.Point(12, 284);
 this.groupBox5.Name = "groupBox5";
 this.groupBox5.Size = new System.Drawing.Size(494, 53);
 this.groupBox5.TabIndex = 7;
 this.groupBox5.TabStop = false;
 this.groupBox5.Text = "Path for Scoring Key File";
 //
 // btnBrowseScoringFile
 //

104

 this.btnBrowseScoringFile.Location = new System.Drawing.Point(386, 18);
 this.btnBrowseScoringFile.Name = "btnBrowseScoringFile";
 this.btnBrowseScoringFile.Size = new System.Drawing.Size(102, 23);
 this.btnBrowseScoringFile.TabIndex = 1;
 this.btnBrowseScoringFile.Text = "Browse";
 this.btnBrowseScoringFile.UseVisualStyleBackColor = true;
 this.btnBrowseScoringFile.Click += new
System.EventHandler(this.btnBrowseScoringFile_Click);
 //
 // txtScoringFile
 //
 this.txtScoringFile.Location = new System.Drawing.Point(7, 20);
 this.txtScoringFile.Name = "txtScoringFile";
 this.txtScoringFile.Size = new System.Drawing.Size(372, 20);
 this.txtScoringFile.TabIndex = 0;
 //
 // btnGetBeforeRegKeyData
 //
 this.btnGetBeforeRegKeyData.Location = new System.Drawing.Point(12, 453);
 this.btnGetBeforeRegKeyData.Name = "btnGetBeforeRegKeyData";
 this.btnGetBeforeRegKeyData.Size = new System.Drawing.Size(495, 36);
 this.btnGetBeforeRegKeyData.TabIndex = 8;
 this.btnGetBeforeRegKeyData.Text = "Create the Before Key Dataset";
 this.btnGetBeforeRegKeyData.UseVisualStyleBackColor = true;
 this.btnGetBeforeRegKeyData.Click += new
System.EventHandler(this.btnGetBeforeRegKeyData_Click);
 //
 // btnGetAfterRegKeyData
 //
 this.btnGetAfterRegKeyData.Location = new System.Drawing.Point(11, 497);
 this.btnGetAfterRegKeyData.Name = "btnGetAfterRegKeyData";
 this.btnGetAfterRegKeyData.Size = new System.Drawing.Size(495, 36);
 this.btnGetAfterRegKeyData.TabIndex = 9;
 this.btnGetAfterRegKeyData.Text = "Create the After Key Dataset";
 this.btnGetAfterRegKeyData.UseVisualStyleBackColor = true;
 this.btnGetAfterRegKeyData.Click += new
System.EventHandler(this.btnGetAfterRegKeyData_Click_1);
 //
 // modeToolStripMenuItem
 //
 this.modeToolStripMenuItem.DropDownItems.AddRange(new
System.Windows.Forms.ToolStripItem[] {
 this.trainingToolStripMenuItem,
 this.experimentalToolStripMenuItem});
 this.modeToolStripMenuItem.Name = "modeToolStripMenuItem";
 this.modeToolStripMenuItem.Size = new System.Drawing.Size(256, 22);
 this.modeToolStripMenuItem.Text = "Mode";
 //
 // trainingToolStripMenuItem
 //
 this.trainingToolStripMenuItem.Name = "trainingToolStripMenuItem";
 this.trainingToolStripMenuItem.Size = new System.Drawing.Size(152, 22);
 this.trainingToolStripMenuItem.Text = "Training";
 this.trainingToolStripMenuItem.Click += new
System.EventHandler(this.trainingToolStripMenuItem_Click);
 //
 // experimentalToolStripMenuItem

105

 //
 this.experimentalToolStripMenuItem.Name = "experimentalToolStripMenuItem";
 this.experimentalToolStripMenuItem.Size = new System.Drawing.Size(152, 22);
 this.experimentalToolStripMenuItem.Text = "Experimental";
 this.experimentalToolStripMenuItem.Click += new
System.EventHandler(this.experimentalToolStripMenuItem_Click);
 //
 // Form1
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(517, 545);
 this.Controls.Add(this.btnGetAfterRegKeyData);
 this.Controls.Add(this.btnGetBeforeRegKeyData);
 this.Controls.Add(this.groupBox5);
 this.Controls.Add(this.groupBox4);
 this.Controls.Add(this.txtStatus);
 this.Controls.Add(this.progressBar1);
 this.Controls.Add(this.btnStartAnalysis);
 this.Controls.Add(this.groupBox3);
 this.Controls.Add(this.groupBox2);
 this.Controls.Add(this.groupBox1);
 this.Controls.Add(this.menuStrip1);
 this.MainMenuStrip = this.menuStrip1;
 this.MaximumSize = new System.Drawing.Size(525, 575);
 this.MinimumSize = new System.Drawing.Size(525, 575);
 this.Name = "Form1";
 this.Text = "Reg Keg";
 this.Load += new System.EventHandler(this.Form1_Load);
 this.groupBox1.ResumeLayout(false);
 this.groupBox1.PerformLayout();
 this.groupBox2.ResumeLayout(false);
 this.groupBox2.PerformLayout();
 this.groupBox3.ResumeLayout(false);
 this.groupBox3.PerformLayout();
 this.menuStrip1.ResumeLayout(false);
 this.menuStrip1.PerformLayout();
 this.groupBox4.ResumeLayout(false);
 this.groupBox4.PerformLayout();
 this.groupBox5.ResumeLayout(false);
 this.groupBox5.PerformLayout();
 this.ResumeLayout(false);
 this.PerformLayout();

 }

 #endregion

 private System.Windows.Forms.GroupBox groupBox1;
 private System.Windows.Forms.Button btnBrowseBeforeFile;
 private System.Windows.Forms.TextBox txtBeforeFilePath;
 private System.Windows.Forms.OpenFileDialog ofdBefore;
 private System.Windows.Forms.OpenFileDialog ofdAfter;
 private System.Windows.Forms.GroupBox groupBox2;
 private System.Windows.Forms.Button btnBrowseAfterFile;
 private System.Windows.Forms.TextBox txtAfterFilePath;
 private System.Windows.Forms.GroupBox groupBox3;

106

 private System.Windows.Forms.Button btnBrowseOutputFile;
 private System.Windows.Forms.TextBox txtOutputFilePath;
 private System.Windows.Forms.SaveFileDialog sfdOutputFile;
 private System.Windows.Forms.Button btnStartAnalysis;
 private System.Windows.Forms.ProgressBar progressBar1;
 private System.Windows.Forms.TextBox txtStatus;
 private System.Windows.Forms.MenuStrip menuStrip1;
 private System.Windows.Forms.ToolStripMenuItem fileToolStripMenuItem;
 private System.Windows.Forms.ToolStripMenuItem
browseBeforeDirectoryToolStripMenuItem;
 private System.Windows.Forms.ToolStripMenuItem
browseAfterDirectoryToolStripMenuItem;
 private System.Windows.Forms.ToolStripMenuItem startRegistryToolStripMenuItem;
 private System.Windows.Forms.ToolStripMenuItem exitToolStripMenuItem;
 private System.Windows.Forms.ToolStripMenuItem helpToolStripMenuItem;
 private System.Windows.Forms.ToolStripMenuItem aboutToolStripMenuItem;
 private System.Windows.Forms.ToolStripMenuItem toolStripMenuItem1;
 private System.Windows.Forms.GroupBox groupBox4;
 private System.Windows.Forms.Button btnBrowseMasterFile;
 private System.Windows.Forms.TextBox txtMasterSuspiciousKeyFiles;
 private System.Windows.Forms.GroupBox groupBox5;
 private System.Windows.Forms.Button btnBrowseScoringFile;
 private System.Windows.Forms.TextBox txtScoringFile;
 private System.Windows.Forms.Button btnGetBeforeRegKeyData;
 private System.Windows.Forms.ToolStripMenuItem
getGeneralStatisticsToolStripMenuItem;
 private System.Windows.Forms.ToolStripMenuItem mnuDetermineCode;
 private System.Windows.Forms.Button btnGetAfterRegKeyData;
 private System.Windows.Forms.ToolStripMenuItem
buildNonPresentFilesToolStripMenuItem;
 private System.Windows.Forms.ToolStripMenuItem modeToolStripMenuItem;
 private System.Windows.Forms.ToolStripMenuItem trainingToolStripMenuItem;
 private System.Windows.Forms.ToolStripMenuItem experimentalToolStripMenuItem;
 }
}

/*
 * File: FrequencyScore.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

namespace RegKeg
{
 public class FrequencyScore
 {
 public int Frequency { get; set; }
 public int Score { get; set; }

 public FrequencyScore(int frequecy, int score)
 {
 this.Frequency = frequecy;
 this.Score = score;

107

 }
 }
}

/*
 * File: ListBuilder.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System;
using System.Collections.Generic;
using System.IO;
using RegKeg.Core;

namespace RegKeg
{
 public class ListBuilder
 {
 #region fields

 private string _parentDirectoryPath;
 private const string MASTER_FILE_NAME = "master_suspicious_keys.txt";
 private const string FREQUECY_FILE_NAME = "frequency_keys.txt";
 private const string SCORING_FILE_NAME = "scoring_keys.txt";
 private const string DISTINCT_MASTER_FILE_NAME =
"distinct_master_suspicious_keys.txt";
 private string _rootLetterDrive;

 #endregion

 #region Constructor(s)

 public ListBuilder(string parentDirectoryPath)
 {
 this._parentDirectoryPath = parentDirectoryPath + @"\";
 this._rootLetterDrive = DriveLetter.Name;

 Search();
 Dictionary<string, int> scoreSystem = ReadToMemory(this._parentDirectoryPath
+ FREQUECY_FILE_NAME);
 WriteScoringFile(scoreSystem);
 }

 private void WriteScoringFile(Dictionary<string, int> scoreSystem)
 {
 using (StreamWriter writer = new StreamWriter(this._parentDirectoryPath +
SCORING_FILE_NAME))
 {
 foreach(KeyValuePair<string, int> kvp in scoreSystem)
 {
 writer.WriteLine(kvp.Key + "|" + kvp.Value + "|" + kvp.Value);
 }

108

 }
 }

 private Dictionary<string, int> ReadToMemory(string masterFile)
 {
 Dictionary<string, int> scoringSystem = new Dictionary<string, int>();
 Dictionary<string, string> cleanKeys = GetListofCleanKeys();

 string key;

 using(StreamReader reader = new StreamReader(masterFile))
 {
 while ((key = reader.ReadLine()) != null)
 {
 if (scoringSystem.ContainsKey(key))
 {
 int value = scoringSystem[key] + 1;
 scoringSystem.Remove(key);

 scoringSystem.Add(key, value);
 }
 else
 {
 if(!cleanKeys.ContainsKey(key))
 scoringSystem.Add(key, 1);
 }
 }
 }

 return scoringSystem;
 }

 //compsciprof skype for professor podnar
 private Dictionary<string, string> GetListofCleanKeys()
 {
 Dictionary<string, string> cleanKeys = new Dictionary<string, string>();
 string[] lines = System.IO.File.ReadAllLines(this._rootLetterDrive +
ConfigurationHelper.GetCleanKeyFilePath());

 foreach (string line in lines)
 {
 try
 {
 if(!cleanKeys.ContainsKey(line))
 cleanKeys.Add(line,"1");
 }
 catch (Exception e)
 {
 Logger.LogError("Exception in GetListOfCleanKeys(): ", e);
 }
 }

 return cleanKeys;
 }

 public void Search()

109

 {
 try
 {
 string[] fileNames = Directory.GetFiles(this._parentDirectoryPath,
"nonPresentKeys.txt", SearchOption.AllDirectories);
 List<string> uniqueKeys = new List<string>();
 List<string> duplicateKeys = new List<string>();

 using (StreamWriter masterWriter = new
StreamWriter(this._parentDirectoryPath + MASTER_FILE_NAME, false))
 {
 using (StreamWriter duplicateKeyWriter = new
StreamWriter(this._parentDirectoryPath + FREQUECY_FILE_NAME, false))
 {
 foreach (string filename in fileNames)
 {
 if (filename.ToLower().EndsWith("nonpresentkeys.txt"))
 {
 WriteDistinctFile(filename);
 string[] keys = System.IO.File.ReadAllLines(filename);

 foreach (string key in keys)
 {
 if (!uniqueKeys.Contains(key))
 uniqueKeys.Add(key);

 duplicateKeys.Add(key);
 }
 }
 }

 for (int i = 0; i < uniqueKeys.Count; i++)
 {
 masterWriter.WriteLine(uniqueKeys[i]);
 }

 for (int j = 0; j < duplicateKeys.Count; j++)
 {
 duplicateKeyWriter.WriteLine(duplicateKeys[j]);
 }
 }
 }
 }
 catch (Exception e)
 {
 Logger.logException("exception in Search(): " + e.Message);
 }
 }

 private void WriteDistinctFile(string fileName)
 {
 using (StreamWriter writer = new StreamWriter(this._parentDirectoryPath +
DISTINCT_MASTER_FILE_NAME,false))
 {
 try
 {
 writer.Write(System.IO.File.ReadAllText(fileName));

110

 }
 catch (Exception e)
 {
 Logger.logException("Cannot write to distinct master file name -
exception: " + e.Message);
 }
 }
 }

 #endregion
 }
}

/*
 * File: Program.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System;
using System.Windows.Forms;

namespace RegKeg
{
 static class Program
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new Form1());
 }
 }
}

/*
 * File: RegistryComparer.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System;
using System.Collections.Generic;
using System.IO;
using System.Windows.Forms;

111

using RegKeg.Core;

namespace RegKeg
{
 public class RegistryComparer
 {
 private Dictionary<string, string> _beforeDictionary;
 private Dictionary<String, String> _afterDictionary;
 private string _outputFilePath;
 private int _mismatchCount;
 private int _notPresentOnTargetDictionary;
 private Dictionary<string, int> _suspiciousKeys;
 private Dictionary<string, string> _cleanKeys;
 private Dictionary<string, FrequencyScore> _frequencyScore;
 private int _score;

 public int MismatchCount
 {
 get { return _mismatchCount; }
 }

 public int Score
 {
 get { return _score; }
 }

 public RegistryComparer(
 Dictionary<string, string> beforeDictionary,
 Dictionary<string, string> afterDicionary,
 string outputFilePath,
 Dictionary<string, FrequencyScore> frequencyScore
)
 {
 this._suspiciousKeys = GetListOfSuspiciousKeys();
 this._cleanKeys = GetListofCleanKeys();
 this._beforeDictionary = beforeDictionary;
 this._afterDictionary = afterDicionary;
 this._outputFilePath = outputFilePath;
 this._frequencyScore = frequencyScore;
 this._mismatchCount = 0;
 this._notPresentOnTargetDictionary = 0;
 }

 private Dictionary<string, string> GetListofCleanKeys()
 {
 Dictionary<string, string> cleanKeys = new Dictionary<string, string>();

 string[] lines = System.IO.File.ReadAllLines(DriveLetter.Name +
ConfigurationHelper.GetCleanKeyFilePath());

 foreach (string line in lines)
 {
 try
 {
 string[] values = line.Split(',');
 switch (values.Length)
 {

112

 case 1:
 if(!cleanKeys.ContainsKey(values[0]))
 cleanKeys.Add(values[0], "");
 break;
 case 2:
 if(!cleanKeys.ContainsKey(values[0]))
 cleanKeys.Add(values[0], values[1]);
 break;

 default:
 Logger.logException("values of clean key is nothing");
 break;
 }
 }
 catch (Exception e)
 {
 Logger.LogError("Exception in GetListOfCleanKeys(): ", e);
 }
 }

 return cleanKeys;
 }

 private Dictionary<string,int> GetListOfSuspiciousKeys()
 {
 Dictionary<string, int> suspiciousKeys = new Dictionary<string, int>();

 string[] lines = System.IO.File.ReadAllLines(DriveLetter.Name +
ConfigurationHelper.GetMaliciousKeyFilePath());

 foreach (string line in lines)
 {
 try
 {
 string[] values = line.Split(',');

 if (!suspiciousKeys.ContainsKey(values[0]) && values.Length == 2)
 suspiciousKeys.Add(values[0], Convert.ToInt16(values[1]));
 }
 catch (Exception e)
 {
 MessageBox.Show("An error occurred: " + e.Message);
 }
 }

 return suspiciousKeys;
 }

 public void PerformComparison()
 {
 DeletePreviousFiles();
 this.Compare(this._beforeDictionary, this._afterDictionary, Target.Before);
 this.Compare(this._afterDictionary, this._beforeDictionary, Target.After);
 }

 private void DeletePreviousFiles()
 {

113

 string filePath = this._outputFilePath + "Scoring_Result.txt";

 if (File.Exists(filePath))
 File.Delete(filePath);
 }

 public void Compare(Dictionary<string,string > target, Dictionary<string,string>
lookup, Target targetDict)
 {
 string exceptionFileName = "";
 string keyNotPresentFileName = "";
 bool appendToFile;
 int maxScore = 0;
 List<int> scoringResults = new List<int>();

 if (targetDict == Target.Before)
 {
 appendToFile = false;
 exceptionFileName =
ConfigurationHelper.GetKeyByName("BeforeReg_AfterReg_exception_file");
 keyNotPresentFileName =
ConfigurationHelper.GetKeyByName("BeforeReg_AfterReg_keynotpresent_file");
 }
 else
 {
 appendToFile = true;
 exceptionFileName =
ConfigurationHelper.GetKeyByName("AfterReg_BeforeReg_exception_file");
 keyNotPresentFileName =
ConfigurationHelper.GetKeyByName("AfterReg_BeforeReg_keynotpresent_file");
 }

 if (!Directory.Exists(this._outputFilePath))
 Directory.CreateDirectory(this._outputFilePath);

 try
 {

 using (StreamWriter exceptionWriter = new
StreamWriter(this._outputFilePath + exceptionFileName))
 {
 using (StreamWriter writer = new StreamWriter(this._outputFilePath +
"Analysis.txt"))
 {
 using (StreamWriter notPresentWriter = new
StreamWriter(this._outputFilePath + keyNotPresentFileName))
 {
 using (StreamWriter nonPresentKeys = new
StreamWriter(this._outputFilePath + "NonPresentKeys.txt"))
 {
 using (StreamWriter result = new
StreamWriter(this._outputFilePath + "scoring_result.txt", true))
 {
 using (StreamWriter statistics = new
StreamWriter(this._outputFilePath + "statistics.txt", appendToFile))
 {

114

 notPresentWriter.WriteLine(targetDict ==
Target.Before
 ? "Keys Not
Present on Target (After Dictionary)"
 : "Keys Not
Present on Target (Before Dictionary)");
 int totalKeys = 0;

 foreach (string key in target.Keys)
 {
 try
 {
 // the target key is contained in the
lookup dictionary
 if (lookup.ContainsKey(key))
 {
 //Values are different
 if (lookup[key] != target[key])
 {
 if (targetDict == Target.After)
 {
 //Write to Analysis.txt
report file
 writer.WriteLine(key +
System.Environment.NewLine);
 writer.WriteLine("BEFORE: " +
System.Environment.NewLine + lookup[key]);
 writer.WriteLine("AFTER: " +
System.Environment.NewLine + target[key]);
 writer.WriteLine("-----------

");

 this._mismatchCount++;
 }
 }
 }
 else
 {
 //the key is not available in the
lookup Dictionary

 //this key is found in the list of
clean keys
 if (_cleanKeys.ContainsKey(key))
 continue;

 if (this._frequencyScore != null &&
this._frequencyScore.ContainsKey(key))
 {
 //Retrieve frequency from the
Dictionary for the given key
 FrequencyScore scoring =
this._frequencyScore[key];
 //Add this value to a running
total of frequency score
 this._score += scoring.Score;

115

scoringResults.Add(scoring.Score);
 result.WriteLine(key + "=" +
scoring.Score);

 if (scoring.Score > maxScore)
 maxScore = scoring.Score;

 totalKeys++;
 }
 else
 {
 //not found in the frequency
dictionary
 //log it to the
nonPresentKeys.txt report data file
 notPresentWriter.WriteLine("Key:
" + key);

notPresentWriter.WriteLine("Value: " + target[key]);
 notPresentWriter.WriteLine("-----
---");

 //write to list of non present
keys - build dictionary of suspicious keys
 nonPresentKeys.WriteLine(key);

this._notPresentOnTargetDictionary++;
 }
 }
 }
 catch (Exception e)
 {
 exceptionWriter.WriteLine("Exception: " +
e);
 }
 }

 if (targetDict == Target.After)
 {
 if (maxScore > 0)
 {
 result.WriteLine("MaxScore=" + maxScore);
 statistics.WriteLine("MaxScore=" +
maxScore);
 }

 if (this._score > 0)
 {
 result.WriteLine("TotalScore=" +
this._score);
 statistics.WriteLine("TotalScore=" +
this._score);

 result.WriteLine("TotalNumberOfKeys=" +
totalKeys);

116

 statistics.WriteLine("TotalNumberOfKeys="
+ totalKeys);

 double average =
GetWeightByKey(this._score, this._frequencyScore);
 result.WriteLine("Average=" + average);
 statistics.WriteLine("Average=" +
average);

 double variance =
GetVariance(scoringResults);
 result.WriteLine("Variance=" + variance);
 statistics.WriteLine("Variance=" +
variance);

 double standardDeviation =
GetStandardDeviation(variance);
 result.WriteLine("StandardDeviation=" +
standardDeviation);
 statistics.WriteLine("StandardDeviation="
+ standardDeviation);
 }
 }
 }
 }
 }
 }
 }
 }
 }
 catch (Exception e)
 {
 MessageBox.Show("Exception: " + e.Message);
 }
 }

 private double GetWeightByKey(int totalFrequencyScore, Dictionary<string,
FrequencyScore> frequencyScoreDictionary)
 {
 //divide the running total by the number of keys in the frequency dictionary.
 double weightByKey = totalFrequencyScore /
(double)frequencyScoreDictionary.Count;

 return weightByKey;
 }

 private double GetVariance(List<int> scoringResults)
 {
 int total = 0;
 int mean = 0;
 double squareResult = 0;
 double squaredTotal = 0;

 foreach (int s in scoringResults)
 total += s;

 try

117

 {
 mean = total / scoringResults.Count;

 foreach (int x in scoringResults)
 squareResult += Math.Pow(x - mean, 2);

 squaredTotal = squareResult / scoringResults.Count;
 return (1 / (double)scoringResults.Count) * squareResult;
 }
 catch (DivideByZeroException dbze)
 {
 Logger.LogError("Divide by Zero Exception (total='" + total + "): ",
dbze);
 return 0;
 }
 }

 private double GetStandardDeviation(double variance)
 {
 return Math.Sqrt(variance);
 }
 }
}

/*
 * File: RegistryReader.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System;
using System.Collections.Generic;
using System.IO;

namespace RegKeg
{
 public class RegistryReader
 {
 #region private fields

 private readonly string _filePath;
 private Dictionary<String, String> _registryDictionary = new Dictionary<string,
string>(120000);

 #endregion

 #region Properties

 public Dictionary<string, string> RegistryDictionary
 {
 get { return _registryDictionary; }
 set { _registryDictionary = value; }
 }

118

 #endregion

 #region Constructor(s)

 public RegistryReader(string filePath)
 {
 this._filePath = filePath;
 ReadFile();
 }

 #endregion

 #region Private Methods

 private void ReadFile()
 {
 int lineCounter = 0;

 string key = null;
 string value = null;

 try
 {
 using (StreamReader streamReader = new StreamReader(this._filePath))
 {
 string line = "";

 while ((line = streamReader.ReadLine()) != null)
 {
 if (line == "" || lineCounter == 0)
 {
 lineCounter++;
 continue;
 }

 if (line.StartsWith("[") && line.EndsWith("]"))
 {
 try
 {
 if(key != null)
 {
 this._registryDictionary.Add(key, value);
 value = "";
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.Message);
 }
 key = line;
 }
 else
 {
 value += line + "\n";
 }

119

 lineCounter++;
 }
 }
 }
 catch (Exception exception)
 {
 Console.WriteLine("Exception: " + exception.Message);
 }
 }

 #endregion

 }
}

/*
 * File: RegKeyGrabber.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System;
using System.Diagnostics;
using System.IO;
using System.Windows.Forms;

namespace RegKeg
{
 public class RegKeyGrabber : Form
 {
 private const string BEFORE_BATCH_FILE_PATH = @"Thesis\Before-After\before-
bruno.bat";
 private const string AFTER_BATCH_FILE_PATH = @"Thesis\Before-After\after-
bruno.bat";

 private const string BEFORE_DESTINATION_DIRECTORY = @"Thesis\Before-
After\Before\";
 private const string AFTER_DESTINATION_DIRECTORY = @"Thesis\Before-
After\Analysis\";

 private const string BEFORE_DATA_FILES_DIRECTORY = @"Thesis\Before-
After\Before\";
 private const string AFTER_DATA_FILES_DIRECTORY = @"Thesis\Before-After\After\";

 private static SNAPSHOT_STATUS _snapshotStatus;

 public RegKeyGrabber(SNAPSHOT_STATUS snapshotStatus)
 {
 _snapshotStatus = snapshotStatus;

120

 CallBatchFile();
 BuildSubDirectoryPath();
 ShowUserMessage();
 }

 private void ShowUserMessage()
 {
 string name =
 _snapshotStatus == SNAPSHOT_STATUS.BEFORE
 ? "before"
 : "after";

 MessageBox.Show("All done grabbing " + name + " registry keys dataset
files");
 }

 private void BuildSubDirectoryPath()
 {
 //start with count
 int count = 1;
 // get subdirectory to copy files
 string subDirectoryName = GetSubdirectoryPath(count);

 //while subdirectory exist
 while (Directory.Exists(subDirectoryName))
 {
 //increment counter
 count++;
 //try again and see if exists
 subDirectoryName = GetSubdirectoryPath(count);
 }

 //when it does not exist, create the subdirectory
 Directory.CreateDirectory(subDirectoryName);
 //Copy files to the specified subdirectory
 CopyFiles(subDirectoryName);
 }

 //Copy files to the subdirectory specified
 private static void CopyFiles(string subDirectoryName)
 {
 string path =
 _snapshotStatus == SNAPSHOT_STATUS.BEFORE
 ? BEFORE_DATA_FILES_DIRECTORY
 : AFTER_DATA_FILES_DIRECTORY;

 //Get list of all files that need to be copied
 string[] files = Directory.GetFiles(DriveLetter.Name + path);

 foreach (string f in files)
 {
 try
 {
 //copy the file to the subdirectory specified
 File.Copy(f, subDirectoryName + @"\" + Path.GetFileName(f));
 }
 catch (IOException e)

121

 {
 Console.WriteLine("IoException: " + e.Message);
 }
 }
 }

 // Will build subdirectory string based on the naming convention of:
 //MM_DD_YYYY_XXX where xxx is a counter starting with 001.
 private static string GetSubdirectoryPath(int count)
 {
 string month = LessThan10(DateTime.Now.Month) ? "0" + DateTime.Now.Month :
DateTime.Now.Month.ToString();
 string day = LessThan10(DateTime.Now.Day) ? "0" + DateTime.Now.Day :
DateTime.Now.Day.ToString();
 string year = DateTime.Now.Year.ToString();
 string strCount = BuildCountString(count);

 string path =
 _snapshotStatus == SNAPSHOT_STATUS.BEFORE
 ? BEFORE_DESTINATION_DIRECTORY
 : AFTER_DESTINATION_DIRECTORY;

 string subDirectoryName = DriveLetter.Name + path +
 month + "-" + day + "-" + year + "_" + strCount;

 return subDirectoryName;
 }

 private static string BuildCountString(int count)
 {
 return count < 10 ? "00" + count : "0" + count;
 }

 private static bool LessThan10(int i)
 {
 return i < 10 ? true : false;
 }

 private static void CallBatchFile()
 {
 string path =
 _snapshotStatus == SNAPSHOT_STATUS.BEFORE
 ? BEFORE_BATCH_FILE_PATH
 : AFTER_BATCH_FILE_PATH;

 //create the Batch process
 Process batchProcess = new Process();
 //Set batch file name
 batchProcess.StartInfo.FileName = DriveLetter.Name + path;

 try
 {
 //start the batch process.
 batchProcess.Start();
 //wait until is done.
 batchProcess.WaitForExit();
 }

122

 catch (Exception e)
 {
 MessageBox.Show("Exception: " + e.Message);
 }
 }
 }
}

/*
 * File: ScoringFileReader.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System;
using System.Collections.Generic;
using System.IO;

namespace RegKeg
{
 public class ScoringFileReader
 {
 public string FilePath { get; set; }

 public ScoringFileReader(string filePath)
 {
 this.FilePath = filePath;
 }

 public Dictionary<string, FrequencyScore> GetScoringDictionary()
 {
 Dictionary<string, FrequencyScore> scoringSystem = new Dictionary<string,
FrequencyScore>();

 try
 {
 using (StreamReader streamReader = new StreamReader(this.FilePath))
 {
 string line = "";
 string[] values = null;

 while ((line = streamReader.ReadLine()) != null)
 {
 try
 {
 values = line.Split('|');
 scoringSystem.Add(values[0], new FrequencyScore(

Convert.ToInt32(values[1]),

Convert.ToInt32(values[2])
));
 }

123

 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.Message);
 }
 }
 }
 }
 catch (Exception exception)
 {
 Console.WriteLine("Exception: " + exception.Message);
 }

 return scoringSystem;
 }
 }
}

/*
 * File: SNAPSHOT_STATUS.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

namespace RegKeg
{
 public enum SNAPSHOT_STATUS
 {
 BEFORE,
 AFTER,
 UNKNOWN
 }
}

/*
 * File: StatisticsBuilder.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Reflection;
using RegKeg.Core;

namespace RegKeg
{
 public class StatisticsBuilder

124

 {
 #region Private Fields

 private string _parentDirectoryPath;
 private string _rootLetterDrive;

 private const string GRAND_TOTAL_STATISTICS = "grand_total_statistics.txt";
 private const string CLEAN_CODE_STATISTICS = "clean_code_total_statistics.txt";
 private const string MALICIOUS_CODE_STATISTICS =
"malicious_code_total_statistics.txt";

 private int _totalScore;
 private int _maxScore;
 private double _average;
 private double _variance;
 private double _standardDeviation;

 #endregion

 #region Constructor(s)

 public StatisticsBuilder(string parentDirectoryPath)
 {
 this._parentDirectoryPath = parentDirectoryPath + @"\";
 this._rootLetterDrive = DriveLetter.Name;

 this.Search(STATS_MODE.CLEAN);
 this.Search(STATS_MODE.MALICIOUS);
 this.Search(STATS_MODE.ALL);
 }

 #endregion

 #region Private Method(s)

 private void Search(STATS_MODE mode)
 {
 try
 {
 if (mode == STATS_MODE.ALL)
 {
 List<string> dataFiles = GetAllDataFiles();
 GetDataFromFiles(dataFiles);
 WriteGrandTotal(GRAND_TOTAL_STATISTICS);
 WriteCsvStatisticsData(GetStatisticsData(), this._parentDirectoryPath
+ @"statistics.csv");
 }

 if(mode == STATS_MODE.CLEAN)
 {
 if (Directory.Exists(this._parentDirectoryPath)) {

 List<string> cleanDataFiles = GetCleanDataFiles();
 GetDataFromFiles(cleanDataFiles);
 WriteGrandTotal(CLEAN_CODE_STATISTICS);
 }
 }

125

 if (mode == STATS_MODE.MALICIOUS)
 {
 List<string> maliciousFile = GetMaliciousDataFiles();
 GetDataFromFiles(maliciousFile);
 WriteGrandTotal(MALICIOUS_CODE_STATISTICS);
 }

 ClearTotals();
 }
 catch (Exception e)
 {
 Logger.logException("exception in StatisticsBuilder.Search(): " +
e.Message);
 }
 }

 private List<string> GetMaliciousDataFiles()
 {
 List<string> cleanDataFiles = GetCleanDataFiles();
 List<string> allDataFiles = GetAllDataFiles();

 List<string> maliciousFile = new List<string>();

 foreach (string path in allDataFiles)
 {
 if (!cleanDataFiles.Contains(path))
 {
 maliciousFile.Add(path);
 }
 }

 return maliciousFile;
 }

 private List<string> GetAllDataFiles()
 {
 List<string> dataFiles = new List<string>();

 string[] fileNames = Directory.GetFiles(this._parentDirectoryPath,
"statistics.txt", SearchOption.AllDirectories);
 dataFiles = AddToDataFiles(dataFiles, fileNames);

 return dataFiles;
 }

 private List<string> GetCleanDataFiles()
 {
 List<string> dataFiles = new List<string>();
 DirectoryInfo directoryInfo = new DirectoryInfo(this._parentDirectoryPath);

 IEnumerable<DirectoryInfo> matchingDirs = directoryInfo
 .EnumerateDirectories("*.*", System.IO.SearchOption.AllDirectories)
 .Where(d => d.EnumerateFiles("Clean_Code.txt").Any());

 foreach (DirectoryInfo info in matchingDirs)
 {

126

 FileInfo[] fileInfo = info.GetFiles("statistics.txt",
SearchOption.AllDirectories);

 foreach (FileInfo f in fileInfo)
 {
 string[] fileNames = Directory.GetFiles(f.Directory.ToString(),
"statistics.txt", SearchOption.AllDirectories);
 dataFiles = AddToDataFiles(dataFiles, fileNames);
 }
 }
 return dataFiles;
 }

 private void WriteCsvStatisticsData<T>(IEnumerable<T> items, string path)
 {
 Type itemType = typeof(T);
 var props = itemType.GetProperties(BindingFlags.Public |
BindingFlags.Instance)
 .OrderBy(p => p.Name);

 using (var writer = new StreamWriter(path))
 {
 writer.WriteLine(string.Join(", ", props.Select(p => p.Name)));

 foreach (var item in items)
 {
 writer.WriteLine(string.Join(", ", props.Select(p => p.GetValue(item,
null))));
 }
 }
 }

 private void ClearTotals()
 {
 this._totalScore = 0;
 this._maxScore = 0;
 this._average = 0;
 this._variance = 0;
 this._standardDeviation = 0;
 }

 private List<string> AddToDataFiles(List<string> dataFiles, string[] fileNames)
 {
 foreach (string f in fileNames)
 {
 dataFiles.Add(f);
 }

 return dataFiles;
 }

 private List<StatisticsData> GetStatisticsData()
 {
 List<string> allDataFiles = GetAllDataFiles();
 List<string> cleanDataFiles = GetCleanDataFiles();
 List<string> maliciousDataFiles = GetMaliciousDataFiles();

127

 List<StatisticsData> statisticsDataFiles = new List<StatisticsData>();

 foreach (string filename in allDataFiles)
 {
 if (filename.EndsWith("statistics.txt"))
 {
 StatisticsData statisticsData = new StatisticsData();

 statisticsData.FileName = filename;
 statisticsData.IsMaliciousCode =
maliciousDataFiles.Contains(filename);

 string[] lines = System.IO.File.ReadAllLines(filename);

 foreach (string line in lines)
 {
 string[] keyValuePair = line.Split('=');

 try
 {
 switch (keyValuePair[0])
 {
 case "TotalScore":
 statisticsData.TotalScore =
Convert.ToInt16(keyValuePair[1]);
 break;

 case "MaxScore":
 statisticsData.MaxScore =
Convert.ToInt32(keyValuePair[1]);
 break;

 case "Average":
 statisticsData.Average =
Convert.ToDouble(keyValuePair[1]);
 break;

 case "Variance":
 statisticsData.Variance =
Convert.ToDouble(keyValuePair[1]);
 break;

 case "StandardDeviation":
 statisticsData.StandardDeviation =
Convert.ToDouble(keyValuePair[1]);
 break;

 default:
 Logger.LogError("Statistics.Search(): ", new
Exception("Can't find statistics variable in switch statement"));
 break;
 }
 }
 catch (Exception e)
 {
 Logger.LogError("error in Search() - try conversion: ", e);
 }

128

 }
 statisticsDataFiles.Add(statisticsData);
 }
 }
 return statisticsDataFiles;
 }

 private void GetDataFromFiles(List<string> fileNames)
 {
 foreach (string filename in fileNames)
 {
 if (filename.EndsWith("statistics.txt"))
 {
 string[] lines = System.IO.File.ReadAllLines(filename);

 foreach (string line in lines)
 {
 string[] keyValuePair = line.Split('=');

 try
 {
 switch (keyValuePair[0])
 {
 case "TotalScore":
 this._totalScore += Convert.ToInt16(keyValuePair[1]);
 break;

 case "MaxScore":
 this._maxScore += Convert.ToInt32(keyValuePair[1]);
 break;

 case "Average":
 this._average += Convert.ToDouble(keyValuePair[1]);
 break;

 case "Variance":
 this._variance += Convert.ToDouble(keyValuePair[1]);
 break;

 case "StandardDeviation":
 this._standardDeviation +=
Convert.ToDouble(keyValuePair[1]);
 break;

 default:
 Logger.LogError("Statistics.Search(): ", new
Exception("Can't find statistics variable in switch statement"));
 break;
 }
 }
 catch (Exception e)
 {
 Logger.LogError("error in Search() - try conversion: ", e);
 }
 }
 }
 }

129

 }

 private void WriteGrandTotal(string fileName)
 {
 using (StreamWriter writer = new StreamWriter(this._parentDirectoryPath +
fileName,false))
 {
 writer.WriteLine("TotalScore=" + _totalScore);
 writer.WriteLine("MaxScore=" + _maxScore);
 writer.WriteLine("Average=" + _average);
 writer.WriteLine("Variance=" + _variance);
 writer.WriteLine("StandardDeviation=" + _standardDeviation);
 }
 }

 #endregion
 }
}

/*
 * File: StatisticsData.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

namespace RegKeg
{
 public class StatisticsData
 {
 #region Private Fields

 private string _fileName;
 private bool _isMaliciousCode;
 private int _totalScore;
 private int _maxScore;
 private double _average;
 private double _variance;
 private double _standardDeviation;

 #endregion

 #region Properties

 public string FileName
 {
 get { return this._fileName; }
 set { this._fileName = value; }
 }

 public bool IsMaliciousCode
 {
 get { return this._isMaliciousCode; }
 set { this._isMaliciousCode = value; }

130

 }

 public int TotalScore
 {
 get { return this._totalScore; }
 set { this._totalScore = value; }
 }

 public int MaxScore
 {
 get { return this._maxScore; }
 set { this._maxScore = value; }
 }

 public double Average
 {
 get { return this._average; }
 set { this._average = value; }
 }

 public double Variance
 {
 get { return this._variance; }
 set { this._variance = value; }
 }

 public double StandardDeviation
 {
 get { return this._standardDeviation; }
 set { this._standardDeviation = value; }
 }

 #endregion

 #region Constructor(s)

 public StatisticsData()
 {

 }

 #endregion
 }
}

/*
 * File: StatisticsReader.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System;
using System.IO;

131

using RegKeg.Core;

namespace RegKeg
{
 public class StatisticsReader
 {
 #region Private Field(s)

 private string _parentDirectoryPath;
 private string _rootLetterDrive;

 #endregion

 #region Properties

 public string ParentDirectoryPath
 {
 get { return this._parentDirectoryPath; }
 set { this._parentDirectoryPath = value; }
 }

 public string RootLetterDrive
 {
 get { return this._rootLetterDrive; }
 set { this._rootLetterDrive = value; }
 }

 #endregion

 #region Constructor(s)

 public StatisticsReader(string parentDirectoryPath)
 {
 this._parentDirectoryPath = parentDirectoryPath + @"\";
 this._rootLetterDrive = DriveLetter.Name;
 }

 #endregion

 public StatisticsData Read()
 {
 StatisticsData statisticsData = new StatisticsData();
 string[] fileNames = Directory.GetFiles(this._parentDirectoryPath,
"statistics.txt", SearchOption.AllDirectories);

 foreach (string filename in fileNames)
 {
 if (filename.EndsWith("statistics.txt"))
 {
 string[] lines = System.IO.File.ReadAllLines(filename);

 foreach (string line in lines)
 {
 string[] keyValuePair = line.Split('=');

 try
 {

132

 switch (keyValuePair[0])
 {
 case "TotalScore":
 statisticsData.TotalScore =
Convert.ToInt16(keyValuePair[1]);
 break;

 case "MaxScore":
 statisticsData.MaxScore =
Convert.ToInt32(keyValuePair[1]);
 break;

 case "Average":
 statisticsData.Average =
Convert.ToDouble(keyValuePair[1]);
 break;

 case "Variance":
 statisticsData.Variance =
Convert.ToDouble(keyValuePair[1]);
 break;

 case "StandardDeviation":
 statisticsData.StandardDeviation =
Convert.ToDouble(keyValuePair[1]);
 break;

 default:
 Logger.LogError("Statistics.Search(): ", new
Exception("Can't find statistics variable in switch statement"));
 break;
 }
 }
 catch (Exception e)
 {
 Logger.LogError("error in Search() - try conversion: ", e);
 }
 }
 }
 }
 return statisticsData;
 }
 }
}

/*
 * File: STATS_MODE.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

namespace RegKeg
{

133

 enum STATS_MODE
 {
 ALL,
 CLEAN,
 MALICIOUS
 }
}

/*
 * File: STATS_MODE.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

namespace RegKeg
{
 enum STATS_MODE
 {
 ALL,
 CLEAN,
 MALICIOUS
 }
}

/*
 * File: AssemblyInfo.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System.Reflection;
using System.Runtime.InteropServices;

// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("RegKeg.Core")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("RegKeg.Core")]
[assembly: AssemblyCopyright("Copyright © 2012")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(false)]

134

// The following GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid("0ed914c9-ce1f-4ba7-946b-78d81635fce3")]

// Version information for an assembly consists of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Build and Revision Numbers
// by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

/*
 * File: ConfigurationHelper.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System;

namespace RegKeg.Core
{
 public static class ConfigurationHelper
 {
 public static string GetKeyByName(string keyName)
 {
 try
 {
 return
System.Configuration.ConfigurationManager.AppSettings[keyName].ToString();
 }
 catch (Exception e)
 {
 Logger.LogError(e);
 return "";
 }
 }

 public static string GetMaliciousKeyFilePath()
 {
 return GetKeyByName("MalicousKeyFilePath");
 }

 public static string GetCleanKeyFilePath()
 {
 return GetKeyByName("CleanKeyFilePath");
 }
 }

135

}

/*
 * File: Logger.cs
 * Project: Master's Thesis
 * Author: Bruno Nader
 * Adviser: Dr. Hrvoje Podnar
 * Date: May 20, 2014
 */

using System;
using System.IO;

namespace RegKeg.Core
{
 public static class Logger
 {
 #region Private Constants

 private const string FILE_NAME = "Exceptions.log";

 #endregion

 #region Public Static Methods

 public static void LogError(Exception e)
 {
 LogError("", e);
 }

 public static void LogError(string message, Exception e)
 {
 using (StreamWriter exceptionWriter = new StreamWriter(FILE_NAME))
 {
 try
 {
 exceptionWriter.WriteLine(DateTime.Now + " - " + message);
 exceptionWriter.WriteLine("Exception Message: " + e.Message);
 }
 catch(Exception){ }
 }
 }

 public static void logException(string message)
 {
 using (StreamWriter exceptionWriter = new StreamWriter(FILE_NAME))
 {
 try
 {
 exceptionWriter.WriteLine(DateTime.Now + " - " + message);
 }
 catch (Exception) { }
 }
 }

136

 #endregion
 }
}

137

REFERENCES

[1] D. Sanok Jr, “An Analysis of How Antivirus Methodologies Are Utilized in Protecting

Computers from Malicious Code”, in Proceedings of the 2nd annual conference on Information

Security curriculum development, Kennesaw, GA, USA, 2005, pp. 142-144

[2] M. Preda, M. Christodorescu, S. Jha, S. Debray, “A Semantics-Based Approach to

Malware Detection”. ACM Transactions on Programming Languages and Systems, ACM, vol.

30, No. 5, Article 25, August 2008

[3] Statistics Brain, “Computer Virus Statistics”, [Online]. Available:

http://www.statisticbrain.com/computer-virus-statistics/. [Retrieved February 2013].

[4] Wikipedia, “Computer Virus”, [Online]. Available:

http://en.wikipedia.org/wiki/Computer_virus. [Retrieved February 2013]

[5] J. Bergeron, M. Debbabi, M. Erhioui, B. Ktari, “Static Analysis of Binary Code to

Isolate Malicious Behaviors” in IEEE 8th International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises, Stanford, CA, USA, 1999, pp. 184-189

[6] A. Lee, V. Varadharajan, U. Tupakula, “On Malware Characterization and Attack

Classification” in Proceedings of the First Australian Web Conference, Adelaide, Australia,

2013

138

[7] Symantec Corp., “Trojan Horse – Symantec Security Response - Glossary”, [Online].

Available: http://us.norton.com/security_response/glossary/define.jsp?letter=t&word=trojan-

horse. [Retrieved February 2013]

[8] D. Distler, “Malware Analysis: An Introduction”. [Online]. Available:

http://www.sans.org/reading-room/whitepapers/malicious/malware-analysis-introduction-2103.

[Retrieved February 2013]

[9] Wikipedia, “Adware”, [Online]. Available: http://en.wikipedia.org/wiki/Adware.

[Retrieved February 2013]

[10] J. Crandall, R. Ensafi, S. Forrest, J. Ladau, B. Shebaro, “The Ecology of Malware” in

NSPW ’08 Proceedings of the 2008 workshop on New security paradigms, pp. 99-106.

[11] Wikipedia, “Computer Worm”, [Online]. Available:

http://en.wikipedia.org/wiki/Computer_worm. [Retrieved February 2013]

[12] J. Rabek, R. Khazan, S. Lewandowski, R. Cunningham. Detection of Injected,

Dynamically Generated, and Obfuscated Malicious Code. Proceedings of the 2003 ACM

workshop on Rapid malcode. ACM, pp-76-82. October 2003

[13] C. Willems, T. Holz, F. Freiling. Toward Automated Dynamic Malware Analysis Using

CWSandbox. Security & Privacy, IEEE, vol. 5, pp 32-39. April 2007

[14] L. Nataraj, P. Porras, V. Yegneswaran, J. Zhang. A Comparative Assessment of Malware

Classification using Binary Texture Analysis and Dynamic Analysis. [Online]. Available:

http://vision.ece.ucsb.edu/publications/aisec17-nataraj.pdf

[15] U. Bayer, A. Moser, C. Kruegel, E. Kirda. (2006, August). Dynamic Analysis of

Malicious Code. Journal in Computer Virology [Online]. 2(1), pp. 67-77. Available:

http://www.springerlink.com/content/7023515231t17557/fulltext.pdf

139

[16] CWSandbox, “Behavior-based Malware Analysis,” [Online]. Available:

http://www.cwsandbox.org/. [Retrieved December 2009].

[17] Norman, Norman Sandbox, [Online]. Available: http://www.norman.com/. [Retrieved

December 2009].

[18] TTanalyze, “A tool for analyzing malware,” [Online]. Available:

http://www.seclab.tuwien.ac.at/projects/ttanalyze/. [Retrieved December 2009]

[19] A. Vasudevan, R. Yerraballi, “Cobra: Fine-grained malware analysis using stealth

localized-execution,” Security and Privacy, vol. 21, no. 24, pp. 15-279, May, 2006.

[20] A. Moser, C. Kruegel, E. Kirda, “Exploring Multiple Execution Paths for Malware

Analysis”, in Proceedings of the 2007 IEEE Symposium on Security and Privacy, 2007, pp. 231-

245

[21] A. Moser, C. Kruegel, E. Kirda, “Limits of Static Analysis for Malware Detection”, 23rd

Annual Computer Security Applications Conference.

[22] Wikipedia, “Microsoft Visual Studio”, [Online]. Available:

http://en.wikipedia.org/wiki/Microsoft_Visual_Studio. [Retrieved March 2014]

[23] Wikipedia, “C Sharp (Programming Language)”, [Online]. Available:

http://en.wikipedia.org/wiki/C_Sharp_(programming_language). [Retrieved March 2014]

[24] GParted, “GParted – Documentation”, [Online]. Available:

http://gparted.org/documentation.php. [Retrieved March 2014]

[25] Clonezilla, “The Free and Open Source Software for Disk Imaging and Cloning”,

[Online]. Available: http://clonezilla.org. [Retrieved March 2014]

[26] Wikipedia, “Windows Registry”, [Online]. Available:

http://en.wikipedia.org/wiki/Windows_Registry/. [Retrieved March 2013]

140

[27] Problem Solving with Algorithms and Data Structures. [Online]. Available:

http://www.cs.umd.edu/class/spring2004/cmsc420/sp04-part2v2/node4.html . [Retrieved April

2014]

[28] Problem Solving with Algorithms and Data Structures. [Online]. Available:

http://www.cs.umd.edu/class/spring2004/cmsc420/sp04-part2v2/node4.html . [Retrieved April

2014]

[29] Wikipedia, “pushd and popd”, [Online]. Available:

http://en.wikipedia.org/wiki/Pushd_and_popd. [Retrieved November 2013]

[30] Computer Hope, “Microsoft DOS dir command”, [Online]. Available:

http://www.computerhope.com/dirhlp.htm. [Retrieved November 2013]

